![](bg9.png)
and Interactive Digital Entertainment, volume 4(1),
pages 16–21.
Dastani, M. (2008). 2apl: a practical agent programming
language. Autonomous agents and multi-agent sys-
tems, 16:214–248.
Engelmann, D., Damasio, J., Krausburg, T., Borges, O.,
Colissi, M., Panisson, A. R., and Bordini, R. H.
(2021). Dial4jaca–a communication interface be-
tween multi-agent systems and chatbots. In Int. con-
ference on practical applications of agents and multi-
agent systems, pages 77–88. Springer.
Feng, D., Carstensdottir, E., El-Nasr, M. S., and Marsella,
S. (2019). Exploring improvisational approaches to
social knowledge acquisition. In Int. Conference on
Autonomous Agents and MultiAgent Systems.
FIPA, T. (2008). Fipa communicative act library specifi-
cation. Foundation for Intelligent Physical Agents,
http://www. fipa. org/specs/fipa00037/SC00037J. html
(30.6. 2004).
Gebhard, P., Schneeberger, T., Baur, T., and Andr
´
e, E.
(2018). Marssi: Model of appraisal, regulation, and
social signal interpretation. In International confer-
ence on Autonomous agents and multi-agent systems.
Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simanti-
raki, O., Roniotis, A., and Tsiknakis, M. (2022). Re-
view on psychological stress detection using biosig-
nals. IEEE Transactions on Affective Computing,
13(1):440–460.
Goldman, A. I. et al. (2012). Theory of mind. The Oxford
handbook of philosophy of cognitive science, 1.
Harbers, M., van den Bosch, K., and Meyer, J.-J. C. (2011).
Agents with a theory of mind in virtual training. In
Multi-Agent Systems for Education and Interactive
Entertainment: Design, Use and Experience, pages
172–187. IGI Global.
Husemann, S., P
¨
oppel, J., and Kopp, S. (2022). Differences
and biases in mentalizing about humans and robots. In
IEEE International Conference on Robot and Human
Interactive Communication, pages 490–497.
Masri, G., Al-Shargie, F., Tariq, U., Almughairbi, F., Ba-
biloni, F., and Al-Nashash, H. (2023). Mental stress
assessment in the workplace: A review. IEEE Trans-
actions on Affective Computing, pages 1–20.
Mayfield, J., Labrou, Y., and Finin, T. W. (1995). Evalua-
tion of kqml as an agent communication language. In
Wooldridge, M., M
¨
uller, J. P., and Tambe, M., editors,
ATAL, volume 1037, pages 347–360. Springer.
Melo, V. S., Panisson, A. R., and Bordini, R. H.
(2016). Argumentation-based reasoning using pref-
erences over sources of information. In International
Conference on Autonomous Agents & Multiagent Sys-
tems, 2016, Cingapura.
Melo, V. S., Panisson, A. R., and Bordini, R. H. (2017).
Meta-information and argumentation in multi-agent
systems. iSys-Brazilian Journal of Information Sys-
tems, 10(3):74–97.
Montes, N., Luck, M., Osman, N., Rodrigues, O., and
Sierra, C. (2023). Combining theory of mind and ab-
ductive reasoning in agent-oriented programming. Au-
tonomous Agents and Multi-Agent Systems, 37(2):36.
Montes, N., Osman, N., and Sierra, C. (2022). Combining
theory of mind and abduction for cooperation under
imperfect information. In European Conference on
Multi-Agent Systems, pages 294–311. Springer.
Morales, A., Barbosa, M., Mor
´
as, L., Cazella, S. C., Sgobbi,
L. F., Sene, I., and Marques, G. (2022a). Occupational
stress monitoring using biomarkers and smartwatches:
A systematic review. Sensors, 22(17).
Morales, A. S., de Oliveira Ourique, F., Mor
´
as, L. D.,
Barbosa, M. L. K., and Cazella, S. C. (2022b). A
Biomarker-Based Model to Assist the Identification
of Stress in Health Workers Involved in Coping with
COVID-19, pages 485–500. Springer.
Morales, A. S., de Oliveira Ourique, F., Mor
´
as, L. D., and
Cazella, S. C. (2022c). Exploring Interpretable Ma-
chine Learning Methods and Biomarkers to Classify-
ing Occupational Stress of the Health Workers, pages
105–124. Springer International Publishing, Cham.
Mosca, F., Sarkadi, S¸., Such, J. M., and McBurney, P.
(2020). Agent expri: Licence to explain. In Explain-
able, Transparent Autonomous Agents and Multi-
Agent Systems: Second International Workshop, EX-
TRAAMAS 2020, Auckland, New Zealand, May 9–13,
2020, Revised Selected Papers 2, pages 21–38.
Mosca, F. and Such, J. (2022). An explainable assistant
for multiuser privacy. Autonomous Agents and Multi-
Agent Systems, 36(1):10.
Panisson, A., Sarkadi, S., McBurney, P., Parsons, S., and
Bordini, R. (2018). Lies, bullshit, and deception in
agent-oriented programming languages. In Proc. of
the 20th International Trust Workshop, pages 50–61.
Panisson, A. R., Sarkadi, S., McBurney, P., Parsons, S., and
Bordini, R. H. (2019). On the formal semantics of
theory of mind in agent communication. In Agree-
ment Technologies: 6th International Conference, AT
2018, Bergen, Norway, December 6-7, 2018, Revised
Selected Papers 6, pages 18–32. Springer.
Parsons, S., Atkinson, K., Haigh, K. Z., Levitt, K. N.,
McBurney, P., Rowe, J., Singh, M. P., and Sklar, E.
(2012). Argument schemes for reasoning about trust.
COMMA, 245:430.
Pluut, H., Curs
,
eu, P. L., and Fodor, O. C. (2022). Develop-
ment and validation of a short measure of emotional,
physical, and behavioral markers of eustress and dis-
tress (meds). Healthcare, 10(2).
Reisenzein, R., Hudlicka, E., Dastani, M., Gratch, J., Hin-
driks, K., Lorini, E., and Meyer, J.-J. C. (2013). Com-
putational modeling of emotion: Toward improving
the inter-and intradisciplinary exchange. IEEE Trans-
actions on Affective Computing, 4(3):246–266.
Ricci, A., Piunti, M., and Viroli, M. (2011). Environment
programming in multi-agent systems: An artifact-
based perspective. Autonomous Agents and Multi-
Agent Systems, 23(2):158–192.
Rocha, M., da Silva, H. H., Morales, A. S., Sarkadi, S., and
Panisson, A. R. (2023). Applying theory of mind to
multi-agent systems: A systematic review. In Brazil-
ian Conference on Intelligent Systems, pages 367–
381. Springer.
Distributed Theory of Mind in Multi-Agent Systems
459