study observed some limitations that can be addressed
in future works. It would be worthwhile to obtain
ground truth from in-situ data for calibration and
result validation. With these field measurements,
models for estimating chl-a, CDOM, TSM, and
turbidity can be tailored based on the requirements
and objectives of the study. Additionally, future
research could focus on a different selection of
parameters or on comparing various satellite sensors
as the data source. Water quality research using
remote sensing and GIS plays an important role in
encouraging researchers to conduct more studies in
unexplored or unattainable locations.
REFERENCES
Acharya, T. D., Subedi, A., Huang, H., & Lee, D. H. (2019).
Application of water indices in surface water change
detection using Landsat imagery in Nepal. Sensors and
Materials, 31(5).
Abdullah, H. S. A., Mahdi, M. S. M., & Ibrahim, H. M. I.
(2016). Water quality assessment models for Dokan
Lake using Landsat 8 OLI satellite images. Journal of
Zankoy Sulaimani, 19(3-4), 25–42. https://www.
researchgate.net/publication/322978901_Water_Qualit
y_Assessment_Models_for_Dokan_Lake_Using_Land
sat_8_OLI_Satellite_Images
Ansper, A. & Alikas, K. (2019) Retrieval of chlorophyll a
from Sentinel-2 MSI data for the European Union water
framework directive reporting purposes. Remote
Sensing, 11(1), 64. doi:10.3390/rs11010064.
Bangira, T., Matongera, T. N., Mabhaudhi, T., & Mutanga,
O. (2024). Remote sensing-based water quality
monitoring in African reservoirs, potential and
limitations of sensors and algorithms: A systematic
review. Physics and Chemistry of the Earth, 134,
103536. https://doi.org/10.1016/j.pce.2023.103536
Doerffer, R. (2015). Algorithm Theoretical Bases
Document (ATBD) for L2 processing of MERIS data
of case 2 waters, 4th reprocessing. Retrieved from
https://c2rcc.org/wp-content/uploads/2022/05/C2RCC
_MERIS_ATBD_4Reproc_20150319.pdf
KC, A., Chalise, A., Parajuli, D., Dhital, N., Shrestha, S., &
Kandel, T. (2019). Surface water quality assessment
using remote sensing, gis and artificial intelligence.
Technical Journal 1(1), 113-122.
Khan, R. M., Salehi, B., Mahdianpari, M., &
Mohammadimanesh, F. (2021). Water Quality
Monitoring Over Finger Lakes Region Using Sentinel-
2 Imagery On Google Earth Engine Cloud Computing
Platform, ISPRS Annals of the Photogrammetry.
Remote Sensing and Spatial Information Sciences, 3,
279 – 283. http://dx.doi.org/10.5194/isprs-annals-V-3-
2021-279-2021
Garg, V., Kumar, S., Aggarwal, S. P., Kumar, V., Dhote, P.
R., Thakur, P. K., Nikam, B. R., Sambare, R. S.,
Siddiqui, A., Muduli, P. R., & Rastogi, G. (2017).
Spectral similarity approach for mapping turbidity of an
inland waterbody. Journal of Hydrology, 550, 527-537.
https://doi.org/10.1016/j.jhydrol.2017.05.039
Ma, Y., Song, K., Wen, Z., Liu, G., Shang, Y., Lyu, L., Du,
J., Yang, Q., Li, S., Tao, H., & Hou, J. (2021). Remote
sensing of turbidity for lakes in northeast China using
sentinel-2 images with machine learning algorithms.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 14, 9132–9146.
https://doi.org/10.1109/jstars.2021.3109292
Masoud. A. A. (2022). On the retrieval of the water quality
parameters fromsentinel-3/2 and landsat-8 oli in the
Nile Delta’s coastal and inland waters. Water 14, 593.
Mucheye, T., Haro, S., Papasyrou, S., & Cabllero, I. (2022).
Water quality and water hyacinth monitoring with the
Sentinel-2A/B satellites in Lake Tana (Ethiopia).
Remote Sensing, 14, 4921
Niroumand-Jadidi, M., Bovolo, F., & Bruzzone, L. (2020)
Water Quality Retrieval from PRISMA hyperspectral
images: First experience in a turbid lake and
comparison with Sentinel-2. Remote Sensing, 12, 3984.
http://dx.doi.org/10.3390/rs12233984
Ouma, Y. O, Noor. K, & Hebert, K. (2020). Modelling
reservoir chlorophyll-a, tss, and turbidity using
sentinel-2A MSI and Landsat-8 OLI satellite sensors
with empirical multivariate regression.
Journal of
Sensors. https://www.researchgate.net/publication/344
332045_Modelling_Reservoir_Chlorophyll-a_TSS_an
d_Turbidity_Using_Sentinel-2A_MSI_and_Landsat-8
_OLI_Satellite_Sensors_with_Empirical_Multivariate
_Regression
Sankaran, R., Al-Khayat, J. A., Aravinth, J., Chatting, M.
E., Sadooni, F. N., Al-Kuwari, H. A. (2023). Retrieval
of suspended sediment concentration (SSC) in the
Arabian Gulf water of arid region by Sentinel-2 data.
Science of the Total Environment, 904.
https://doi.org/10.1016/j.scitotenv.2023.166875
Seleem, T., Bafi, D., & Parchardidis, I. (2022). Water
quality monitoring using Landsat 8 and Sentinel-2
satellite data (2014–2020) in Timsah Lake, Ismailia,
Suez Canal region (Egypt). Journal of the Indian
Society of Remote Sensing. https://doi.org/10.1007/
s12524-022-01613-9
Sent, G., Biguino, B., Favareto, L., Cruz, J., Sa, C.,
Dogliotti, A. I., Palma, C., Brotas, V., & Brito, A. C.
(2021). Deriving water quality parameters using
Sentinel-2 imagery: A case study in the Sado Estuary,
Portugal. Remote Sensing, 13(5) 1043.
https://doi.org/10.3390/rs13051043
Su, Y.-F., Liou, J.-J., Hou, J.-C., Hung, W.-C., Hsu, S.-M.,
Lien, Y.-T., Su, M.-D., Cheng, K.-S., & Wang, Y.-F.
(2008). A multivariate model for coastal water quality
mapping using satellite remote sensing images.
SENSORS, 8(10), 6321–6339. https://doi.org/10.3390/
s8106321
Virdis, S. G. P., Xue, W., Winijkul, E., Nitivattananon, V.,
& Punpukdee, P. (2022). Remote sensing of tropical
riverine water quality using Sentinel-2 MSI and field
observations. Ecological Indicators, 144, 109472.
https://doi.org/10.1016/j.ecolind.2022.109472