
REFERENCES
Agentschap Wegen en Verkeer (2023). Wegen en verkeer.
https://wegenenverkeer.be/. Accessed on 27 May
2023.
Bandyopadhyay, S., Lokesh, N., Vivek, S. V., and Murty,
M. N. (2020). Outlier resistant unsupervised deep ar-
chitectures for attributed network embedding. WSDM
2020 - Proceedings of the 13th International Confer-
ence on Web Search and Data Mining, pages 25–33.
Deng, L., Lian, D., Huang, Z., and Chen, E. (2022). Graph
convolutional adversarial networks for spatiotemporal
anomaly detection. IEEE Transactions on Neural Net-
works and Learning Systems, 33:2416–2428.
Ding, K., Li, J., Bhanushali, R., and Liu, H. (2019). Deep
anomaly detection on attributed networks. Proceed-
ings, pages 594–602.
Fan, H., Zhang, F., and Li, Z. (2020). Anomalydae: Dual
autoencoder for anomaly detection on attributed net-
works. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceed-
ings, 2020-May:5685–5689.
Flemish Government (2022). Rapport verkeersindicatoren
snelwegen vlaanderen 2022. https://www.verkeersce
ntrum.be/studies/rapport-verkeersindicatoren-snelw
egen-vlaanderen-2022. Accessed on 20 November
2023.
Liang, Y., Shao, Z., Wang, F., Zhang, Z., Sun, T., and Xu,
Y. (2023). Basicts: An open source fair multivariate
time series prediction benchmark. Lecture Notes in
Computer Science, pages 87–101.
Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R.,
Ding, K., Chen, C., Peng, H., Shu, K., Chen, G. H.,
Jia, Z., and Yu, P. S. (2022a). Pygod: A python
library for graph outlier detection. arXiv preprint
arXiv:2204.12095.
Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R.,
Ding, K., Chen, C., Peng, H., Shu, K., Sun, L., Li,
J., Chen, G. H., Jia, Z., and Yu, P. S. (2022b). Bond:
Benchmarking unsupervised outlier node detection on
static attributed graphs. Neural Information Process-
ing Systems.
Liu, R., Zhao, S., Cheng, B., Yang, H., Tang, H., and Yang,
F. (2020). St-mfm: A spatiotemporal multi-modal fu-
sion model for urban anomalies prediction. Frontiers
in Artificial Intelligence and Applications, 325:1922–
1929.
OpenStreetMap (2023). Openstreetmap. https://www.open
streetmap.org/. Accessed on 27 May 2023.
Sabour, S., Rao, S., and Ghaderi, M. (2021). Deepflow:
Abnormal traffic flow detection using siamese net-
works. 2021 IEEE International Smart Cities Con-
ference, ISC2 2021.
Shao, Z., Zhang, Z., Wang, F., Wei, W., and Xu, Y. (2022).
Spatial-temporal identity: A simple yet effective base-
line for multivariate time series forecasting; spatial-
temporal identity: A simple yet effective baseline for
multivariate time series forecasting. CIKM ’22: Pro-
ceedings of the 31st ACM International Conference on
Information & Knowledge Management.
Sun, F., Dubey, A., and White, J. (2018). Dxnat - deep
neural networks for explaining non-recurring traf-
fic congestion. Proceedings - 2017 IEEE Interna-
tional Conference on Big Data, Big Data 2017, 2018-
January:2141–2150.
Tang, S. and Gao, H. (2005). Traffic-incident detection-
algorithm based on nonparametric regression. IEEE
Transactions on Intelligent Transportation Systems,
6(1):38–42.
Tedjopurnomo, D. A., Bao, Z., Zheng, B., Choudhury,
F. M., and Qin, A. K. (2022). A survey on mod-
ern deep neural network for traffic prediction: Trends,
methods and challenges. IEEE Transactions on
Knowledge and Data Engineering, 34:1544–1561.
Weil, R., Wootton, J., and Garc
´
ıa-Ortiz, A. (1998). Traffic
incident detection: Sensors and algorithms. Mathe-
matical and Computer Modelling, 27(9):257–291.
Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and Zhang,
C. (2020). Connecting the dots: Multivariate time se-
ries forecasting with graph neural networks. Proceed-
ings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 20:753–
763.
Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. (2019).
Graph wavenet for deep spatial-temporal graph mod-
eling. IJCAI International Joint Conference on Artifi-
cial Intelligence, 2019-August:1907–1913.
Ye, J., Zhao, J., Ye, K., and Xu, C. (2020). How to build a
graph-based deep learning architecture in traffic do-
main: A survey. IEEE Transactions on Intelligent
Transportation Systems, 23:3904–3924.
Zhang, H., Zhao, S., Liu, R., Wang, W., Hong, Y., and Hu,
R. (2022). Automatic traffic anomaly detection on the
road network with spatial-temporal graph neural net-
work representation learning. Wireless Communica-
tions & Mobile Computing.
Zhang, M., Li, T., Shi, H., Li, Y., and Hui, P. (2019).
A decomposition approach for urban anomaly de-
tection across spatiotemporal data. IJCAI Inter-
national Joint Conference on Artificial Intelligence,
2019-August:6043–6049.
Zhu, L., Wang, B., Yan, Y., Guo, S., and Tian, G. (2022). A
novel traffic accident detection method with compre-
hensive traffic flow features extraction. Signal, Image
and Video Processing.
VEHITS 2024 - 10th International Conference on Vehicle Technology and Intelligent Transport Systems
256