
Kather, J. N., Krisam, J., Charoentong, P., Luedde, T., Her-
pel, E., Weis, C.-A., Gaiser, T., Marx, A., Valous,
N. A., Ferber, D., Jansen, L., Reyes-Aldasoro, C. C.,
Z
¨
ornig, I., J
¨
ager, D., Brenner, H., Chang-Claude, J.,
Hoffmeister, M., and Halama, N. (2019). Predicting
survival from colorectal cancer histology slides us-
ing deep learning: A retrospective multicenter study.
PLoS Med, 16(1):e1002730.
Kim, Y. J., Jang, H., Lee, K., Park, S., Min, S.-G., Hong,
C., Park, J. H., Lee, K., Kim, J., Hong, W., et al.
(2021). Paip 2019: Liver cancer segmentation chal-
lenge. Medical Image Analysis, 67:101854.
Komura, D. and Ishikawa, S. (2021). Histology images
from uniform tumor regions in tcga whole slide im-
ages. Cell Reports, 38(9):110424.
Mahajan, K., Sharma, M., and Vig, L. (2020). Meta-
dermdiagnosis: Few-shot skin disease identification
using meta-learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 730–731.
Medela, A., Picon, A., Saratxaga, C. L., Belar, O., Cabez
´
on,
V., Cicchi, R., Bilbao, R., and Glover, B. (2019). Few-
shot learning in histopathological images: reducing
the need of labeled data on biological datasets. In
2019 IEEE 16th International Symposium on Biomed-
ical Imaging (ISBI 2019), pages 1860–1864. IEEE.
Nichol, A. and Schulman, J. (2018). Reptile: A
scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999.
Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., and
Rueckert, D. (2020). Self-supervision with superpix-
els: Training few-shot medical image segmentation
without annotation. In European Conference on Com-
puter Vision, pages 762–780. Springer.
Sarwinda, D., Bustamam, A., Paradisa, R. H., Argyadiva,
T., and Mangunwardoyo, W. (2020). Analysis of deep
feature extraction for colorectal cancer detection. In
2020 4th International Conference on Informatics and
Computational Sciences (ICICoS), pages 1–5. IEEE.
Shakeri, F., Boudiaf, M., Mohammadi, S., Sheth, I., Havaei,
M., Ben Ayed, I., and Kahou, S. E. (2022). Fhist: A
benchmark for few-shot classification of histological
images. arXiv.
Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical
networks for few-shot learning. In Advances in Neural
Information Processing Systems (NeurIPS).
Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L.
(2016). A dataset for breast cancer histopathological
image classification. IEEE Transactions on Biomedi-
cal Engineering, 63(7):1455–1462.
tcga (2005). The cancer genome atlas.
https://www.cancer.gov/ccg/research/genome-
sequencing/tcga. Accessed on: 2023-11-30.
Teng, H., Zhang, W., Wei, J., Lv, L., Tang, L., Fu, C.-
C., Cai, Y., Qin, G., Ye, M., and Fang, Qu, e. a.
(2021). Few-shot learning on the diagnosis of lym-
phatic metastasis of lung carcinoma. Research Square.
Wang, Y., Chao, W.-L., Weinberger, K. Q., and van der
Maaten, L. (2019). Simpleshot: Revisiting nearest-
neighbor classification for few-shot learning. arXiv
preprint arXiv:1911.04623.
Yang, J., Chen, H., Yan, J., Chen, X., and Yao, J.
(2022). Towards better understanding and better
generalization of few-shot classification in histology
images with contrastive learning. arXiv preprint
arXiv:2202.09059.
Yu, Q., Dang, K., Tajbakhsh, N., Terzopoulos, D., and Ding,
X. (2021). A location-sensitive local prototype net-
work for few-shot medical image segmentation. In
2021 IEEE 18th International Symposium on Biomed-
ical Imaging (ISBI), pages 262–266. IEEE.
Zhang, C., Cai, Y., Lin, G., and Shen, C. (2020). Deepemd:
Few-shot image classification with differentiable earth
mover’s distance and structured classifiers. In Con-
ference on Computer Vision and Pattern Recognition
(CVPR).
Ziko, I. M., Dolz, J., Granger, E., and Ben Ayed, I. (2020).
Laplacian regularized few-shot learning. In Interna-
tional Conference on Machine Learning (ICML).
Few-Shot Histopathology Image Classification: Evaluating State-of-the-Art Methods and Unveiling Performance Insights
253