
REFERENCES
Adler, J. and Lunz, S. (2018). Banach wasserstein gan. Ad-
vances in neural information processing systems, 31.
Anderson-Bergman, C., Kolda, T. G., and Kincher-Winoto,
K. (2018). Xpca: Extending pca for a combination
of discrete and continuous variables. arXiv preprint
arXiv:1808.07510.
Assefa, S. A., Dervovic, D., Mahfouz, M., Tillman, R. E.,
Reddy, P., and Veloso, M. (2020). Generating syn-
thetic data in finance: opportunities, challenges and
pitfalls. In Proceedings of the First ACM International
Conference on AI in Finance, pages 1–8.
Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoen-
coders. arXiv preprint arXiv:2003.05991.
Bhanot, K., Qi, M., Erickson, J. S., Guyon, I., and Ben-
nett, K. P. (2021). The problem of fairness in synthetic
healthcare data. Entropy, 23(9):1165.
Brechmann, E. C. and Schepsmeier, U. (2013). Modeling
dependence with c-and d-vine copulas: the r package
cdvine. Journal of statistical software, 52:1–27.
Brophy, E., Wang, Z., and Ward, T. E. (2019). Quick and
easy time series generation with established image-
based gans. arXiv preprint arXiv:1902.05624.
Davari, A., Aptoula, E., Yanikoglu, B., Maier, A., and
Riess, C. (2018). Gmm-based synthetic samples for
classification of hyperspectral images with limited
training data. IEEE Geoscience and Remote Sensing
Letters, 15(6):942–946.
De, P., Chatterjee, A., and Rakshit, A. (2020). Regular-
ized k-svd-based dictionary learning approaches for
pir sensor-based detection of human movement direc-
tion. IEEE Sensors Journal, 21(5):6459–6467.
Donahue, C., McAuley, J., and Puckette, M. (2018).
Adversarial audio synthesis. arXiv preprint
arXiv:1802.04208.
Esteban, C., Hyland, S. L., and R
¨
atsch, G. (2017). Real-
valued (medical) time series generation with recurrent
conditional gans. arXiv preprint arXiv:1706.02633.
Fan, J., Liu, T., Li, G., Chen, J., Shen, Y., and Du, X. (2020).
Relational data synthesis using generative adversarial
networks: A design space exploration. arXiv preprint
arXiv:2008.12763.
Fedus, W., Goodfellow, I., and Dai, A. M. (2018). Maskgan:
better text generation via filling in the . arXiv preprint
arXiv:1801.07736.
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and
Greenspan, H. (2018). Synthetic data augmentation
using gan for improved liver lesion classification. In
2018 IEEE 15th international symposium on biomed-
ical imaging (ISBI 2018), pages 289–293. IEEE.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2020). Generative adversarial networks. Com-
munications of the ACM, 63(11):139–144.
Han, F. and Liu, H. (2012). Semiparametric principal com-
ponent analysis. Advances in Neural Information Pro-
cessing Systems, 25.
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman,
J. H. (2009). The elements of statistical learning: data
mining, inference, and prediction, volume 2. Springer.
Hernadez, M., Epelde, G., Alberdi, A., Cilla, R., and
Rankin, D. (2023). Synthetic tabular data evaluation
in the health domain covering resemblance, utility,
and privacy dimensions. Methods of Information in
Medicine.
Islam, Z., Abdel-Aty, M., Cai, Q., and Yuan, J. (2021).
Crash data augmentation using variational autoen-
coder. Accident Analysis & Prevention, 151:105950.
Jolliffe, I. T. (2002). Principal component analysis for spe-
cial types of data. Springer.
Jordon, J., Jarrett, D., Saveliev, E., Yoon, J., Elbers, P.,
Thoral, P., Ercole, A., Zhang, C., Belgrave, D., and
van der Schaar, M. (2021). Hide-and-seek privacy
challenge: Synthetic data generation vs. patient re-
identification. In NeurIPS 2020 Competition and
Demonstration Track, pages 206–215. PMLR.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Kurita, T. (2019). Principal component analysis (pca).
Computer Vision: A Reference Guide, pages 1–4.
Li, S.-C., Tai, B.-C., and Huang, Y. (2019). Evaluating vari-
ational autoencoder as a private data release mecha-
nism for tabular data. In 2019 IEEE 24th Pacific Rim
International Symposium on Dependable Computing
(PRDC), pages 198–1988. IEEE.
Liu, F., Cheng, Z., Chen, H., Wei, Y., Nie, L., and Kankan-
halli, M. (2022). Privacy-preserving synthetic data
generation for recommendation systems. In Proceed-
ings of the 45th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 1379–1389.
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and
Frey, B. (2015). Adversarial autoencoders. arXiv
preprint arXiv:1511.05644.
Meyer, D. and Nagler, T. (2021). Synthia: Multidimen-
sional synthetic data generation in python. Journal of
Open Source Software, 6(65):2863.
Moon, J., Jung, S., Park, S., and Hwang, E. (2020). Con-
ditional tabular gan-based two-stage data generation
scheme for short-term load forecasting. IEEE Access,
8:205327–205339.
Reynolds, D. A. et al. (2009). Gaussian mixture models.
Encyclopedia of biometrics, 741(659-663).
Sano, N. (2020). Synthetic data by principal component
analysis. In 2020 International Conference on Data
Mining Workshops (ICDMW), pages 101–105. IEEE.
Sklar, A. (1973). Random variables, joint distribution func-
tions, and copulas. Kybernetika, 9(6):449–460.
Wan, Z., Zhang, Y., and He, H. (2017). Variational autoen-
coder based synthetic data generation for imbalanced
learning. In 2017 IEEE symposium series on compu-
tational intelligence (SSCI), pages 1–7. IEEE.
Wen, B., Colon, L. O., Subbalakshmi, K., and Chan-
dramouli, R. (2021). Causal-tgan: Generating tabu-
lar data using causal generative adversarial networks.
arXiv preprint arXiv:2104.10680.
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
150