
(2017). Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 5173–5182.
Bridle, J. (1989). Training stochastic model recognition al-
gorithms as networks can lead to maximum mutual in-
formation estimation of parameters. Advances in neu-
ral information processing systems, 2.
Chen, J., Frey, E. C., He, Y., Segars, W. P., Li, Y., and Du,
Y. (2022). Transmorph: Transformer for unsupervised
medical image registration. Medical image analysis,
82:102615.
Christiansen, P. H., Kragh, M. F., Brodskiy, Y., and
Karstoft, H. (2019). Unsuperpoint: End-to-end unsu-
pervised interest point detector and descriptor. arXiv
preprint arXiv:1907.04011.
DeTone, D., Malisiewicz, T., and Rabinovich, A. (2018).
Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition
workshops, pages 224–236.
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. R.,
and Xu, D. (2021). Swin unetr: Swin transformers
for semantic segmentation of brain tumors in mri im-
ages. In International MICCAI Brainlesion Workshop,
pages 272–284. Springer.
He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. (2023). A generalization of vit/mlp-mixer
to graphs. In International Conference on Machine
Learning, pages 12724–12745. PMLR.
Lindeberg, T. (2012). Scale invariant feature transform.
Liu, J., Li, X., Wei, Q., Xu, J., and Ding, D. (2022). Semi-
supervised keypoint detector and descriptor for retinal
image matching. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXI, pages 593–609.
Springer.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60:91–110.
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G.,
Morris, J. C., and Buckner, R. L. (2007). Open ac-
cess series of imaging studies (oasis): cross-sectional
mri data in young, middle aged, nondemented, and
demented older adults. Journal of cognitive neuro-
science, 19(9):1498–1507.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer.
Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich,
A. (2020). Superglue: Learning feature matching
with graph neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947.
Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand,
L., Stenborg, E., Safari, D., Okutomi, M., Pollefeys,
M., Sivic, J., et al. (2018). Benchmarking 6dof out-
door visual localization in changing conditions. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 8601–8610.
Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X. (2021).
Loftr: Detector-free local feature matching with trans-
formers. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
8922–8931.
Truong, P., Apostolopoulos, S., Mosinska, A., Stucky, S.,
Ciller, C., and Zanet, S. D. (2019). Glampoints:
Greedily learned accurate match points. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 10732–10741.
Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A.,
Aucoin, N., Narayan, V., Beets-Tan, R. G., Fillion-
Robin, J.-C., Pieper, S., and Aerts, H. J. (2017).
Computational radiomics system to decode the radio-
graphic phenotype. Cancer research, 77(21):e104–
e107.
Utilizing Radiomic Features for Automated MRI Keypoint Detection: Enhancing Graph Applications
325