temporal convolution (TC) block, dimension
reduction (DR) block, and classification block. The
dataset used in this paper consists of 29 healthy
people who move their hands with open or closed
eyes. Alternatively, one of the limitations of this
dataset is that it is not large enough for EEG-ITNet
to prove its advantages, so data augmentation could
be an appropriate technique to solve this problem.
After adjusting the hyperparameters, our model's
accuracy and precision were 75.45% and 76.43%.
Furthermore, the best result with data augmentation
was related to the noise injection method, NI EEG-
ITNet, and its accuracy and precision were 75.86%
and 76.31%, respectively.
Since few models have been implemented on this
dataset, other researchers can try other deep networks
or combine our proposed method with other
algorithms to improve accuracy. The proposed data is
available in (Kodera et al., 2023).
ACKNOWLEDGEMENTS
This work was supported by the university specific
research project SGS-2022-016 Advanced Methods
of Data Processing and Analysis (project SGS-2022-
016).
REFERENCES
Lebedev, M. A., & Nicolelis, M. A. L. (2017). Brain-
Machine Interfaces: From Basic Science to Neuro-
prostheses and Neurorehabilitation. Physiological
Reviews, 97(2), 767–837. https://doi.org/10.1152/
physrev.00027.2016.
Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller,
G., & Vaughan, T. (2002). Brain-Computer Interfaces
for Communication and Control. Clinocal
Neurophysiology, 113, 767-791.
Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., & He,
B. (2016). Noninvasive Electroencephalogram Based
Control of a Robotic Arm for Reach and Grasp Tasks.
Scientific Reports, 6(1), 38565. https://doi.org/10.1038/
srep38565.
Mu Li & Bao-Liang Lu. (2009). Emotion classification
based on gamma-band EEG. 2009 Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society, 1223–1226. https://doi.org/10.1109/
IEMBS.2009.5334139.
Liu, Y.-H., Lin, L.-F., Chou, C.-W., Chang, Y., Hsiao, Y.-
T., & Hsu, W.-C. (2019). Analysis of
Electroencephalography Event-Related Desynchronisa-
tion and Synchronisation Induced by Lower-Limb
Stepping Motor Imagery. Journal of Medical and
Biological Engineering, 39(1), 54–69. https://doi.org/
10.1007/s40846-018-0379-9.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature, 521(7553), 436–444. https://doi.org/10.1038/
nature14539.
Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S. U.,
Altuwaijri, G. A., Abdul, W., Bencherif, M. A., &
Faisal, M. (2023). Deep learning techniques for
classification of electroencephalogram (EEG) motor
imagery (MI) signals: A review. Neural Computing and
Applications, 35(20), 14681–14722. https://doi.org/
10.1007/s00521-021-06352-5.
Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J.,
Glasstetter, M., Eggensperger, K., Tangermann, M.,
Hutter, F., Burgard, W., & Ball, T. (2017). Deep
learning with convolutional neural networks for EEG
decoding and visualization. Human Brain Mapping,
38(11), 5391–5420. https://doi.org/10.1002/hbm.23730.
Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S.
M., Hung, C. P., & Lance, B. J. (2018). EEGNet: A
compact convolutional neural network for EEG-based
brain–computer interfaces. Journal of Neural
Engineering, 15(5), 056013.
Dai, G., Zhou, J., Huang, J., & Wang, N. (2020). HS- CNN:
A CNN with hybrid convolution scale for EEG motor
imagery classification. Journal of Neural Engineering,
17(1), 016025. https://doi.org/10.1088/1741-2552/ab40
5f.
Borra, D., Fantozzi, S., & Magosso, E. (2020). Interpretable
and lightweight convolutional neural network for EEG
decoding: Application to movement execution and
imagination. Neural Networks, 129, 55–74.
https://doi.org/10.1016/j.neunet.2020.05.032.
Santamaria-Vazquez, E., Martinez-Cagigal, V., Vaquerizo-
Villar, F., & Hornero, R. (2020). EEG- Inception: A
Novel Deep Convolutional Neural Network for
Assistive ERP-Based Brain-Computer Interfaces. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering, 28(12), 2773–2782. https://doi.org/10.11
09/TNSRE.2020.3048106.
Mirzabagherian, H., Menhaj, M. B., Suratgar, A. A., Talebi,
N., Abbasi Sardari, M. R., & Sajedin, A. (2023).
Temporal-spatial convolutional residual network for
decoding attempted movement related EEG signals of
subjects with spinal cord injury. Computers in Biology
and Medicine, 164, 107159. https://doi.org/10.1016/
j.compbiomed.2023.107159.
Amin, S. U., Altaheri, H., Muhammad, G., Abdul, W., &
Alsulaiman, M. (2022). Attention-Inception and Long-
Short-Term Memory-Based Electroencephalography
Classification for Motor Imagery Tasks in
Rehabilitation. IEEE Transactions on Industrial
Informatics, 18(8), 5412– 5421. https://doi.org/10.11
09/TII.2021.3132340.
Ingolfsson, T. M., Hersche, M., Wang, X., Kobayashi, N.,
Cavigelli, L., & Benini, L. (2020). EEG-TCNet: An
Accurate Temporal Convolutional Network for
Embedded Motor-Imagery Brain-Machine Interfaces.
https://doi.org/10.48550/ARXIV.2006.00622.