
electromyography and its applications. Springer Sci-
ence & Business Media.
Bengacemi, H., Gharbi, A. H., Ravier, P., Abed-Meraim,
K., and Buttelli, O. (2021a). Surface emg signal seg-
mentation based on hmm modelling: Application on
parkinson’s disease. ENP Engineering Science Jour-
nal, 1(1):63–74.
Bengacemi, H., Hacine-Gharbi, A., Ravier, P., Abed-
Meraim, K., and Buttelli, O. (2021b). Surface emg
signal classification for parkinson’s disease using wcc
descriptor and ann classifier. In ICPRAM, pages 287–
294.
Bhoi, A. K. (2017). Classification and clustering of parkin-
son’s and healthy control gait dynamics using LDA
and K-means. International Journal Bioautomation,
21(1).
Buttelli, O. (2012). Agence nationale de la recherche.
http://www.agence-nationale-recherche.fr/Projet-
ANR-12-TECS-0020.
Carletti, T., Fanelli, D., and Guarino, A. (2006). A new
route to non invasive diagnosis in neurodegenerative
diseases? Neuroscience letters, 394(3):252–255.
Chan, A. D., Englehart, K., Hudgins, B., and Lovely, D. F.
(2002). Hidden markov model classification of my-
oelectric signals in speech. IEEE Engineering in
Medicine and Biology Magazine, 21(5):143–146.
Chibelushi, C. C., Deravi, F., and Mason, J. S. (2002). A
review of speech-based bimodal recognition. IEEE
transactions on multimedia, 4(1):23–37.
Dastgheib, Z. A., Lithgow, B., and Moussavi, Z. (2012).
Diagnosis of parkinson’s disease using electrovestibu-
lography. Medical & biological engineering & com-
puting, 50(5):483–491.
Elamvazuthi, I., Duy, N., Ali, Z., Su, S., Khan, M. A., and
Parasuraman, S. (2015). Electromyography (EMG)
based classification of neuromuscular disorders using
multi-layer perceptron. Procedia Computer Science,
76:223–228.
Englehart, K., Hudgins, B., Parker, P. A., and Stevenson,
M. (1999). Classification of the myoelectric signal
using time-frequency based representations. Medical
Engineering and Physics, 21(6):431–438.
Furui, S. (1981). Cepstral analysis technique for automatic
speaker verification. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 29(2):254–272.
Furui, S. (1986). Speaker-independent isolated word recog-
nition using dynamic features of speech spectrum.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 34(1):52–59.
Hacine-Gharbi, A. and Ravier, P. (2018). Wavelet cepstral
coefficients for electrical appliances identification us-
ing hidden markov models. In ICPRAM, pages 541–
549.
Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y.,
and Goldberger, A. L. (1998). Gait variability and
basal ganglia disorders: Stride-to-stride variations of
gait cycle timing in parkinson’s disease and hunting-
ton’s disease. Movement disorders, 13(3):428–437.
Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C.-
K., Cudkowicz, M. E., Wei, J. Y., and Goldberger,
A. L. (1997). Altered fractal dynamics of gait: re-
duced stride-interval correlations with aging and hunt-
ington’s disease. Journal of applied physiology,
82(1):262–269.
Henmi, O., Shiba, Y., Saito, T., Tsuruta, H., Takeuchi, A.,
Shirataka, M., Obuchi, S., Kojima, M., and Ikeda, N.
(2009). Spectral analysis of gait variability of stride
interval time series: comparison of young, elderly
and parkinson’s disease patients. Journal of Physical
Therapy Science, 21(2):105–111.
Hogan, N. and Mann, R. W. (1980). Myoelectric
signal processing: Optimal estimation applied to
electromyography-part ii: Experimental demonstra-
tion of optimal myoprocessor performance. IEEE
Transactions on Biomedical Engineering, (7):396–
410.
Hussain, M., Reaz, M. B. I., Mohd-Yasin, F., and Ibrahimy,
M. I. (2009). Electromyography signal analysis using
wavelet transform and higher order statistics to deter-
mine muscle contraction. Expert Systems, 26(1):35–
48.
Jiang, D., Lu, Y.-n., Yu, M., and Yuanyuan, W. (2019). Ro-
bust sleep stage classification with single-channel eeg
signals using multimodal decomposition and hmm-
based refinement. Expert Systems with Applications,
121:188–203.
Khorasani, A. and Daliri, M. R. (2014). Hmm for classi-
fication of parkinson’s disease based on the raw gait
data. Journal of medical systems, 38(12):147.
Kugler, P., Jaremenko, C., Schlachetzki, J., Winkler, J.,
Klucken, J., and Eskofier, B. (2013). Automatic
recognition of parkinson’s disease using surface elec-
tromyography during standardized gait tests. In 2013
35th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC),
pages 5781–5784. IEEE.
Kwon, J.-W., Kim, J.-H., and Choi, H.-H. (2007). Classifi-
cation of the emg signal using cascaded classifier. In
World Congress on Medical Physics and Biomedical
Engineering 2006, pages 1222–1225. Springer.
Lei, L. and Kun, S. (2016). Speaker recognition using
wavelet cepstral coefficient, i-vector, and cosine dis-
tance scoring and its application for forensics. Journal
of Electrical and Computer Engineering, 2016.
Liu, J., Ying, D., and Rymer, W. Z. (2015). EMG burst pres-
ence probability: A joint time–frequency representa-
tion of muscle activity and its application to onset de-
tection. Journal of Biomechanics, 48(6):1193–1197.
Mahaphonchaikul, K., Sueaseenak, D., Pintavirooj, C.,
Sangworasil, M., and Tungjitkusolmun, S. (2010).
EMG signal feature extraction based on wavelet trans-
form. In ECTI-CON2010: The 2010 ECTI Interna-
tional Confernce on Electrical Engineering/Electron-
ics, Computer, Telecommunications and Information
Technology, pages 327–331. IEEE.
Manwatkar, A. P., Salwe, S., Bagade, A., and Raut, R. A
review on detection of parkinson’s disease.
Miller, R. A., Thaut, M. H., McIntosh, G. C., and Rice,
R. R. (1996). Components of EMG symmetry and
variability in parkinsonian and healthy elderly gait.
Surface EMG Signal Segmentation and Classification for Parkinson’s Disease Based on HMM Modelling
937