
tional Conference on Cyberworlds (CW), pages 357–
362.
Guo, G. and Zhang, N. (2019). A survey on deep learning
based face recognition. Computer vision and image
understanding, 189:102805.
Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). Ms-
celeb-1m: A dataset and benchmark for large-scale
face recognition. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part III 14,
pages 87–102. Springer.
Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ram-
age, D. (2018). Federated learning for mobile key-
board prediction. arXiv preprint arXiv:1811.03604.
He, C., Shah, A. D., Tang, Z., Sivashunmugam, D. F. N.,
Bhogaraju, K., Shimpi, M., Shen, L., Chu, X.,
Soltanolkotabi, M., and Avestimehr, S. (2021). Fedcv:
a federated learning framework for diverse computer
vision tasks. arXiv preprint arXiv:2111.11066.
Jiang, L., Meng, D., Yu, S.-I., Lan, Z., Shan, S., and Haupt-
mann, A. (2014). Self-paced learning with diversity.
Advances in neural information processing systems,
27.
Jose, E., M., G., Haridas, M. T. P., and Supriya, M.
(2019). Face recognition based surveillance system
using facenet and mtcnn on jetson tx2. In 2019 5th
International Conference on Advanced Computing &
Communication Systems (ICACCS), pages 608–613.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., et al. (2021). Advances and
open problems in federated learning. Foundations and
Trends® in Machine Learning, 14(1–2):1–210.
Kortli, Y., Jridi, M., Al Falou, A., and Atri, M. (2020). Face
recognition systems: A survey. Sensors, 20(2):342.
Kumar, A., Kumar, P. S., and Agarwal, R. (2019). A face
recognition method in the iot for security appliances
in smart homes, offices and cities. In 2019 3rd In-
ternational Conference on Computing Methodologies
and Communication (ICCMC), pages 964–968.
Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020a). A review
of applications in federated learning. Computers &
Industrial Engineering, 149:106854.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020b).
Federated learning: Challenges, methods, and fu-
ture directions. IEEE signal processing magazine,
37(3):50–60.
Liu, C.-T., Wang, C.-Y., Chien, S.-Y., and Lai, S.-H. (2022).
Fedfr: Joint optimization federated framework for
generic and personalized face recognition. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 36, pages 1656–1664.
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L.
(2017). Sphereface: Deep hypersphere embedding for
face recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 212–220.
Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T.,
Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Ch-
eney, J., et al. (2018). Iarpa janus benchmark-c: Face
dataset and protocol. In 2018 international conference
on biometrics (ICB), pages 158–165. IEEE.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In Ar-
tificial intelligence and statistics, pages 1273–1282.
PMLR.
Meena, D. and Sharan, R. (2016). An approach to face de-
tection and recognition. In 2016 International Con-
ference on Recent Advances and Innovations in Engi-
neering (ICRAIE), pages 1–6.
Nagatsuka, K., Broni-Bediako, C., and Atsumi, M. (2023).
Length-based curriculum learning for efficient pre-
training of language models. New Generation Com-
puting, 41(1):109–134.
Oloyede, M. O., Hancke, G. P., and Myburgh, H. C. (2020).
A review on face recognition systems: recent ap-
proaches and challenges. Multimedia Tools and Ap-
plications, 79:27891–27922.
Platanios, E. A., Stretcu, O., Neubig, G., Pocz
´
os, B., and
Mitchell, T. (2019). Competence-based curriculum
learning for neural machine translation. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1162–1172.
Ramaswamy, S., Mathews, R., Rao, K., and Beaufays, F.
(2019). Federated learning for emoji prediction in a
mobile keyboard. arXiv preprint arXiv:1906.04329.
Sinha, S., Garg, A., and Larochelle, H. (2020). Curricu-
lum by smoothing. Advances in Neural Information
Processing Systems, 33:21653–21664.
Soviany, P., Ionescu, R. T., Rota, P., and Sebe, N. (2022).
Curriculum learning: A survey. International Journal
of Computer Vision, 130(6):1526–1565.
Stremmel, J. and Singh, A. (2021). Pretraining federated
text models for next word prediction. In Advances in
Information and Communication: Proceedings of the
2021 Future of Information and Communication Con-
ference (FICC), Volume 2, pages 477–488. Springer.
Taskiran, M., Kahraman, N., and Erdem, C. E. (2020). Face
recognition: Past, present and future (a review). Digi-
tal Signal Processing, 106:102809.
Vahidian, S., Kadaveru, S., Baek, W., Wang, W., Kungurt-
sev, V., Chen, C., Shah, M., and Lin, B. (2023). When
do curricula work in federated learning? In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5084–5094.
Wang, X., Chen, Y., and Zhu, W. (2021). A survey on cur-
riculum learning. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(9):4555–4576.
Yang, J., Wang, Z., Huang, B., Xiao, J., Liang, C., Han, Z.,
and Zou, H. (2023). Headpose-softmax: Head pose
adaptive curriculum learning loss for deep face recog-
nition. Pattern Recognition, 140:109552.
Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong,
N., Ramage, D., and Beaufays, F. (2018). Applied
federated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903.
Yu, T., Bagdasaryan, E., and Shmatikov, V. (2020). Sal-
vaging federated learning by local adaptation. arXiv
preprint arXiv:2002.04758.
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. (2018). Federated learning with non-iid data. arXiv
preprint arXiv:1806.00582.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
852