
dle ganga basin. Environmental Science and Pollution
Research, 29(43):64939–64958.
Li, R., Jiao, Q., Cao, W., Wong, H.-S., and Wu, S. (2020).
Model adaptation: Unsupervised domain adaptation
without source data. In CVPR, pages 9641–9650.
Li, Y., Dang, B., Zhang, Y., and Du, Z. (2022). Wa-
ter body classification from high-resolution optical re-
mote sensing imagery: Achievements and perspec-
tives. ISPRS Journal of Photogrammetry and Remote
Sensing, 187:306–327.
Liu, W. and Qin, R. (2020). A multikernel domain adap-
tation method for unsupervised transfer learning on
cross-source and cross-region remote sensing data
classification. TGRS, 58(6):4279–4289.
Liu, Y. and Li, X. (2014). Domain adaptation for land use
classification: A spatio-temporal knowledge reusing
method. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 98:133–144.
Long, M., Cao, Z., Wang, J., and Jordan, M. I. (2018). Con-
ditional adversarial domain adaptation. Neurips, 31.
Luo, M. and Ji, S. (2022). Cross-spatiotemporal land-
cover classification from vhr remote sensing images
with deep learning based domain adaptation. IS-
PRS Journal of Photogrammetry and Remote Sensing,
191:105–128.
Mahmon, N. A. and Ya’acob, N. (2014). A review on clas-
sification of satellite image using artificial neural net-
work (ann). In 2014 IEEE 5th Control and system
graduate research colloquium, pages 153–157. IEEE.
Masud, M.M., W. C. G. J. e. a. (2012). Facing the real-
ity of data stream classification: coping with scarcity
of labeled data. Knowledge and Information Systems,
33:213–244.
Oza, P., Sindagi, V. A., Sharmini, V. V., and Patel, V. M.
(2023). Unsupervised domain adaptation of object de-
tectors: A survey. TPAMI.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.
Peng, J., Huang, Y., Sun, W., Chen, N., Ning, Y., and Du, Q.
(2022). Domain adaptation in remote sensing image
classification: A survey. JSTARS, 15:9842–9859.
Sch
¨
olkopf, B., Williamson, R. C., Smola, A., Shawe-Taylor,
J., and Platt, J. (1999). Support vector method for
novelty detection. Neurips, 12.
Shen, J., Qu, Y., Zhang, W., and Yu, Y. (2018). Wasser-
stein distance guided representation learning for do-
main adaptation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32.
Souza, A. P., Oliveira, B. A., Andrade, M. L., Starling, M.
C. V., Pereira, A. H., Maillard, P., Nogueira, K., dos
Santos, J. A., and Amorim, C. C. (2023). Integrating
remote sensing and machine learning to detect turbid-
ity anomalies in hydroelectric reservoirs. Science of
The Total Environment, 902:165964.
Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P., and
Kawanabe, M. (2007). Direct importance estimation
with model selection and its application to covariate
shift adaptation. In Platt, J., Koller, D., Singer, Y.,
and Roweis, S., editors, Neurips, volume 20. Curran
Associates, Inc.
Tian, S., Guo, H., Xu, W., Zhu, X., Wang, B., Zeng,
Q., Mai, Y., and Huang, J. J. (2023). Remote sens-
ing retrieval of inland water quality parameters us-
ing sentinel-2 and multiple machine learning algo-
rithms. Environmental Science and Pollution Re-
search, 30(7):18617–18630.
Tuia, D., Persello, C., and Bruzzone, L. (2016). Do-
main adaptation for the classification of remote sens-
ing data: An overview of recent advances. IEEE Geo-
science and Remote Sensing Magazine, 4(2):41–57.
Tuia, D., Persello, C., and Bruzzone, L. (2021). Re-
cent advances in domain adaptation for the clas-
sification of remote sensing data. arXiv preprint
arXiv:2104.07778.
Uguroglu, S. and Carbonell, J. (2011). Feature selection
for transfer learning. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 430–442. Springer.
Wagle, N., Acharya, T. D., and Lee, D. H. (2020). Compre-
hensive review on application of machine learning al-
gorithms for water quality parameter estimation using
remote sensing data. Sens. Mater, 32(11):3879–3892.
Wambugu, N., Chen, Y., Xiao, Z., Tan, K., Wei, M., Liu,
X., and Li, J. (2021). Hyperspectral image classifi-
cation on insufficient-sample and feature learning us-
ing deep neural networks: A review. International
Journal of Applied Earth Observation and Geoinfor-
mation, 105:102603.
Wen, J., Greiner, R., and Schuurmans, D. (2015). Cor-
recting covariate shift with the frank-wolfe algorithm.
In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAI’15, page 1010–1016.
AAAI Press.
Yan, L., Zhu, R., Liu, Y., and Mo, N. (2018). Tradaboost
based on improved particle swarm optimization for
cross-domain scene classification with limited sam-
ples. JSTARS, 11(9):3235–3251.
Yan, Y., Wu, H., Ye, Y., Bi, C., Lu, M., Liu, D., Wu, Q., and
Ng, M. K. (2022). Transferable feature selection for
unsupervised domain adaptation. IEEE Transactions
on Knowledge and Data Engineering, 34(11):5536–
5551.
Zhang, L., Lan, M., Zhang, J., and Tao, D. (2022). Stage-
wise unsupervised domain adaptation with adversarial
self-training for road segmentation of remote-sensing
images. TGRS, 60:1–13.
Zhang, Y., Liu, T., Long, M., and Jordan, M. (2019). Bridg-
ing theory and algorithm for domain adaptation. In In-
ternational Conference on Machine Learning, pages
7404–7413. PMLR.
Zheng, Z., Zhong, Y., Su, Y., and Ma, A. (2022). Do-
main adaptation via a task-specific classifier frame-
work for remote sensing cross-scene classification.
TGRS, 60:1–13.
Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H.,
Wu, B., and Ye, L. (2022). A review of the application
of machine learning in water quality evaluation. Eco-
Environment & Health, 1(2):107–116.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
868