
Group, N. N. (2013). Minimize cognitive load to max-
imize usability. https://www.nngroup.com/articles/
minimize-cognitive-load/.
Jaiswal, D., Chatterjee, D., Gavas, R., Ramakrishnan, R. K.,
and Pal, A. (2021). Effective assessment of cognitive
load in real-world scenarios using wrist-worn sensor
data. In Proceedings of the Workshop on Body-Centric
Computing Systems.
Jiao, Z., Gao, X., Wang, Y., Li, J., and Xu, H. (2018).
Deep convolutional neural networks for mental load
classification based on eeg data. Pattern Recognition,
76:582–595.
Khawaja, M. A., Chen, F., and Marcus, N. (2014). Measur-
ing cognitive load using linguistic features: Implica-
tions for usability evaluation and adaptive interaction
design. International Journal of Human-Computer In-
teraction, 30:343–368.
Kossaifi, J. et al. (2019). Sewa db: A rich database for
audio-visual emotion and sentiment research in the
wild. Transactions on Pattern Analysis and Machine
Intelligence.
Kress, G. (2009). Multimodality: A Social Semiotic Ap-
proach to Contemporary Communication. Routledge,
London ; New York.
Kuanar, S., Athitsos, V., Pradhan, N., Mishra, A., and Rao,
K. (2018). Cognitive analysis of working memory
load from eeg, by a deep recurrent neural network.
2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2576–
2580.
Kutafina, E., Heiligers, A., Popovic, R., Brenner, A., Han-
kammer, B., Jonas, S., Mathiak, K., and Zweerings, J.
(2021). Tracking of mental workload with a mobile
eeg sensor. Sensors (Basel, Switzerland), 21(15).
Miji
´
c, I.,
ˇ
Sarlija, M., and Petrinovi
´
c, D. (2019). Mmod-
cog: A database for multimodal cognitive load classi-
fication. 2019 11th International Symposium on Im-
age and Signal Processing and Analysis (ISPA), pages
15–20.
Nguyen, T., Jeong, H., Yang, E., and Hwang, S. J.
(2020). Clinical risk prediction with temporal prob-
abilistic asymmetric multi-task learning. ArXiv,
abs/2006.12777.
Oppelt, M. P., Foltyn, A., Deuschel, J., Lang, N., Holzer,
N., Eskofier, B. M., and Yang, S. H. (2022). Adabase:
A multimodal dataset for cognitive load estimation.
Sensors (Basel, Switzerland).
Oschlies-Strobel, A., Gruss, S., Jerg-Bretzke, L., Walter, S.,
and Hazer-Rau, D. (2017). Preliminary classification
of cognitive load states in a human machine interac-
tion scenario. In 2017 International Conference on
Companion Technology (ICCT), pages 1–5. IEEE.
Paas, F. and van Merri
¨
enboer, J. (2020). Cognitive load the-
ory: A broader view on the role of memory in learn-
ing and education. Educational Psychology Review,
32:1053–1072.
Phuong, M. and Hutter, M. (2022). Formal algorithms for
transformers.
Qureshi, S. A., Saha, S., Hasanuzzaman, M., Dias, G., and
Cambria, E. (2019). Multitask representation learning
for multimodal estimation of depression level. IEEE
Intelligent Systems, 34:45–52.
Ruder, S. (2017). An overview of multi-task learning in
deep neural networks. ArXiv, abs/1706.05098.
Saha, A., Minz, V., Bonela, S., Sreeja, S. R., Chowdhury,
R., and Samanta, D. (2018). Classification of eeg sig-
nals for cognitive load estimation using deep learning
architectures. In 2018 Conference Proceedings, pages
59–68. Springer.
Sarkar, S., Chatterjee, J., Chakraborty, S., and Ganguly, N.
(2022). Avcaffe: A large scale audio-visual dataset of
cognitive load in remote work environments.
Søgaard, A. and Bingel, J. (2017). Identifying beneficial
task relations for multi-task learning in deep neural
networks. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 164–169.
Tan, H., Zhou, Y., Tao, Q., Rosen, J., and van Dijken, S.
(2021). Bioinspired multisensory neural network with
crossmodal integration and recognition. Nature Com-
munications, 12.
Taylor, S., Jaques, N., Nosakhare, E., Sano, A., and Picard,
R. W. (2020). Personalized multitask learning for pre-
dicting tomorrow’s mood, stress, and health. IEEE
Transactions on Affective Computing, 11:200–213.
Thees, M., Kapp, S., Altmeyer, K., Malone, S., Br
¨
unken,
R., and Kuhn, J. (2021). Comparing two sub-
jective rating scales assessing cognitive load during
technology-enhanced stem laboratory courses. Fron-
tiers in Education, 6.
Tsai, Y.-H. H., Bai, S., Liang, P. P., Kolter, J. Z., Morency,
L.-P., and Salakhutdinov, R. (2019). Multimodal
Transformer for Unaligned Multimodal Language Se-
quences. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 6558–6569, Florence, Italy. Association
for Computational Linguistics.
Vanneste, P., Raes, A., Morton, J., Bombeke, K., Acker,
B. V. V., Larmuseau, C., Depaepe, F., and den Noort-
gate, W. V. (2020). Towards measuring cognitive load
through multimodal physiological data. Cognition,
Technology & Work, 23:567–585.
Wang, Z., Bai, Y., Zhou, Y., and Xie, C. (2023). Can cnns
be more robust than transformers?
Young, J. Q., ten Cate, O., Durning, S., and van Gog, T.
(2014). Cognitive load theory: Implications for med-
ical education: Amee guide no. 86. Medical Teacher,
36(5):371–384.
Zhang, X., Lyu, Y., Qu, T., Qiu, P., Luo, X., Zhang, J.,
Fan, S., and Shi, Y. (2019). Photoplethysmogram-
based cognitive load assessment using multi-feature
fusion model. ACM Transactions on Applied Percep-
tion (TAP), 16:1 – 17.
Zhou, F., Shui, C., Abbasi, M.,
´
Emile Robitaille, L., Wang,
B., and Gagn
´
e, C. (2020). Task similarity estimation
through adversarial multitask neural network. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 32:466–480.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
876