Lakhtakia, R., Mehta, A., & Nema, S. (2009). Melanoma :
A frequently missed diagnosis. Medical Journal Armed
Forces India, 65(3), 292–294. https://doi.org/10.1016/
s0377-1237(09)80036-1.
Ichim, L., Mitrică, R. I., & Popescu, D. (2023). Detection
of melanomas using ensembles of deep convolutional
Neural Networks. 2023 13th International Symposium
on Advanced Topics in Electrical Engineering (ATEE).
https://doi.org/10.1109/atee58038.2023.10108394.
Li, Y., & Shen, L. (2018). Skin lesion analysis towards
melanoma detection using Deep Learning Network.
Sensors, 18(2), 556. https://doi.org/10.3390/s18020556
Harangi, B., Baran, A., & Hajdu, A. (2018). Classification
of skin lesions using an ensemble of Deep Neural
Networks. 2018 40th Annual International Conference
of the IEEE Engineering in Medicine and Biology
Society (EMBC). https://doi.org/10.1109/embc.20
18.85 12800.
Bisla, D., Choromanska, A., Berman, R. S., Stein, J. A., &
Polsky, D. (2019). Towards automated melanoma
detection with Deep Learning: Data Purification and
augmentation. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW). https://doi.org/10.1109/cvprw.2019.00330.
Ali, R., Hardie, R. C., Narayanan Narayanan, B., & De
Silva, S. (2019). Deep learning ensemble methods for
skin lesion analysis towards melanoma detection. 2019
IEEE National Aerospace and Electronics Conference
(NAECON).
https://doi.org/10.1109/naecon46414.2019.9058245.
Adegun, A. A., & Viriri, S. (2020). Deep learning-based
system for automatic melanoma detection. IEEE
Access, 8, 7160–7172. https://doi.org/10.1109/
access.2019.2962812.
Wei, L., Ding, K., & Hu, H. (2020). Automatic skin cancer
detection in dermoscopy images based on Ensemble
Lightweight Deep Learning Network. IEEE Access, 8,
99633–99647. https://doi.org/10.1109/access.2020.299
7710.
Xie, P., Li, T., Li, F., Zuo, K., Zhou, J., & Liu, J. (2021).
Multi-scale convolutional neural network for
melanoma histopathology image classification. 2021
IEEE 3rd International Conference on Frontiers
Technology of Information and Computer (ICFTIC).
https://doi.org/10.1109/icftic54370.2021.9647390.
Sharma, P., Gautam, A., Nayak, R., & Balabantaray, B. K.
(2022). Melanoma detection using advanced deep
neural network. 2022 4th International Conference on
Energy, Power and Environment (ICEPE).
https://doi.org/10.1109/icepe55035.2022.9798123.
Nandhini, V., Sam Christopher, S., Shivashnee, B., &
Kumar, C. R. (2023). Early detection of melanoma
using convolutional neural network and Random Forest
algorithm. 2023 9th International Conference on
Advanced Computing and Communication Systems
(ICACCS). https://doi.org/10.1109/icaccs57279.20
23.10112814.
Simonyan, K. & Zisserman, A. (2015) Very Deep
Convolutional Networks for Large-Scale Image
Recognition. The 3rd International Conference on
Learning Representations (ICLR2015). https://arxiv.
org/abs/1409.1556.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
https://doi.org/10.1109/cvpr.2016.90.
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.
Q. (2017). Densely connected Convolutional Networks.
2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). https://doi.org/
10.1109/cvpr.2017.243.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
https://doi.org/10.1109/cvpr.2016.308.
Mienye, I. D., & Sun, Y. (2022). A survey of Ensemble
Learning: Concepts, algorithms, applications, and
prospects. IEEE Access, 10, 99129–99149.
https://doi.org/10.1109/access.2022.3207287.
Kaleem, M. A., Cai, J., Amirsoleimani, A., & Genov, R.
(2023). A survey of ensemble methods for mitigating
Memristive Neural Network Non-idealities. 2023 IEEE
International Symposium on Circuits and Systems
(ISCAS). https://doi.org/10.1109/iscas46773.2023.101
81553.
Mabrouk, A., Díaz Redondo, R. P., Dahou, A., Abd Elaziz,
M., & Kayed, M. (2022). Pneumonia detection on chest
X-ray images using ensemble of deep convolutional
Neural Networks. Applied Sciences, 12(13), 6448.
https://doi.org/10.3390/app12136448.
Lundberg Scott M. and Lee Su-In. (2017). A unified
approach to interpreting model predictions. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS'17).
Curran Associates Inc., Red Hook, NY, USA, 4768–
4777.
Shakeri, E., Mohammed, E. A., Shakeri H.A., Z., & Far, B.
(2021). Exploring features contributing to the early
prediction of sepsis using machine learning. 2021 43rd
Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC).
https://doi.org/10.1109/embc46164.2021.9630317.
Ian C. Covert, Scott Lundberg, and Su-In Lee. (2020).
Understanding global feature contributions with
additive importance measures. In Proceedings of the
34th International Conference on Neural Information
Processing Systems (NIPS'20). Curran Associates Inc.,
Red Hook, NY, USA, Article 1444, 17212–17223.
Gessert, N., Nielsen, M., Shaikh, M., Werner, R., &
Schlaefer, A. (2020). Skin lesion classification using
ensembles of multi-resolution efficientnets with Meta
Data. MethodsX, 7, 100864. https://doi.org/10.1016/
j.mex.2020.100864.
Setiawan, A. W. (2020). Effect of color enhancement on
early detection of skin cancer using convolutional
neural network. 2020 IEEE International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT).
https://doi.org/10.1109/iciot48696.2020.9089631.