Lakhtakia, R., Mehta, A., & Nema, S. (2009). Melanoma : 
A frequently missed diagnosis. Medical Journal Armed 
Forces India, 65(3), 292–294. https://doi.org/10.1016/ 
s0377-1237(09)80036-1. 
Ichim, L., Mitrică, R. I., & Popescu, D. (2023). Detection 
of melanomas  using ensembles  of  deep convolutional 
Neural Networks. 2023 13th International Symposium 
on Advanced Topics in Electrical Engineering (ATEE). 
https://doi.org/10.1109/atee58038.2023.10108394. 
Li,  Y.,  &  Shen,  L.  (2018).  Skin  lesion  analysis  towards 
melanoma  detection  using  Deep  Learning  Network. 
Sensors, 18(2), 556. https://doi.org/10.3390/s18020556 
Harangi, B., Baran, A., & Hajdu, A. (2018). Classification 
of  skin  lesions  using  an  ensemble  of  Deep  Neural 
Networks. 2018 40th Annual International Conference 
of the IEEE Engineering in Medicine and Biology 
Society  (EMBC).  https://doi.org/10.1109/embc.20 
18.85 12800. 
Bisla, D., Choromanska, A., Berman, R. S., Stein, J. A., & 
Polsky,  D.  (2019).  Towards  automated  melanoma 
detection  with  Deep  Learning:  Data  Purification  and 
augmentation.  2019 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition Workshops 
(CVPRW). https://doi.org/10.1109/cvprw.2019.00330. 
Ali, R., Hardie, R. C., Narayanan Narayanan, B., & De 
Silva, S. (2019). Deep learning ensemble methods for 
skin lesion analysis towards melanoma detection. 2019 
IEEE National Aerospace and Electronics Conference 
(NAECON). 
https://doi.org/10.1109/naecon46414.2019.9058245. 
Adegun,  A.  A., &  Viriri,  S.  (2020).  Deep  learning-based 
system  for  automatic  melanoma  detection.  IEEE 
Access,  8,  7160–7172.  https://doi.org/10.1109/ 
access.2019.2962812. 
Wei, L., Ding, K., & Hu, H. (2020). Automatic skin cancer 
detection  in  dermoscopy  images  based  on  Ensemble 
Lightweight Deep Learning Network. IEEE Access, 8, 
99633–99647. https://doi.org/10.1109/access.2020.299 
7710. 
Xie, P., Li, T., Li, F., Zuo, K., Zhou, J., & Liu, J. (2021). 
Multi-scale  convolutional  neural  network  for 
melanoma  histopathology  image  classification.  2021 
IEEE 3rd International Conference on Frontiers 
Technology of Information and Computer  (ICFTIC). 
https://doi.org/10.1109/icftic54370.2021.9647390. 
Sharma, P., Gautam, A., Nayak, R., & Balabantaray, B. K. 
(2022).  Melanoma  detection  using  advanced  deep 
neural network. 2022 4th International Conference on 
Energy, Power and Environment  (ICEPE). 
https://doi.org/10.1109/icepe55035.2022.9798123. 
Nandhini,  V.,  Sam  Christopher,  S.,  Shivashnee,  B.,  & 
Kumar,  C.  R.  (2023).  Early  detection  of  melanoma 
using convolutional neural network and Random Forest 
algorithm.  2023 9th International Conference on 
Advanced Computing and Communication Systems 
(ICACCS).  https://doi.org/10.1109/icaccs57279.20 
23.10112814. 
Simonyan,  K.  &  Zisserman,  A.  (2015)  Very  Deep 
Convolutional  Networks  for  Large-Scale  Image 
Recognition.  The 3rd International Conference on 
Learning Representations  (ICLR2015).  https://arxiv. 
org/abs/1409.1556. 
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual 
learning for image recognition. 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR). 
https://doi.org/10.1109/cvpr.2016.90. 
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. 
Q. (2017). Densely connected Convolutional Networks. 
2017 IEEE Conference on Computer Vision and 
Pattern Recognition  (CVPR).  https://doi.org/ 
10.1109/cvpr.2017.243. 
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, 
Z.  (2016).  Rethinking  the  inception  architecture  for 
computer vision. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR). 
https://doi.org/10.1109/cvpr.2016.308. 
Mienye,  I.  D.,  &  Sun,  Y.  (2022).  A  survey  of  Ensemble 
Learning:  Concepts,  algorithms,  applications,  and 
prospects.  IEEE Access,  10,  99129–99149. 
https://doi.org/10.1109/access.2022.3207287. 
Kaleem,  M.  A.,  Cai,  J.,  Amirsoleimani, A.,  &  Genov,  R. 
(2023). A  survey of  ensemble methods  for mitigating 
Memristive Neural Network Non-idealities. 2023 IEEE 
International Symposium on Circuits and Systems 
(ISCAS).  https://doi.org/10.1109/iscas46773.2023.101 
81553. 
Mabrouk, A., Díaz Redondo, R. P., Dahou, A., Abd Elaziz, 
M., & Kayed, M. (2022). Pneumonia detection on chest 
X-ray  images  using  ensemble  of  deep  convolutional 
Neural  Networks.  Applied Sciences,  12(13),  6448. 
https://doi.org/10.3390/app12136448. 
Lundberg  Scott  M.  and  Lee  Su-In.  (2017).  A  unified 
approach  to  interpreting  model  predictions.  In 
Proceedings of the 31st International Conference on 
Neural Information Processing Systems  (NIPS'17). 
Curran  Associates  Inc.,  Red  Hook,  NY,  USA,  4768–
4777. 
Shakeri, E., Mohammed, E. A., Shakeri H.A., Z., & Far, B. 
(2021).  Exploring  features  contributing  to  the  early 
prediction of sepsis using machine learning. 2021 43rd 
Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC). 
https://doi.org/10.1109/embc46164.2021.9630317. 
Ian  C.  Covert,  Scott  Lundberg,  and  Su-In  Lee.  (2020). 
Understanding  global  feature  contributions  with 
additive  importance  measures.  In  Proceedings of the 
34th International Conference on Neural Information 
Processing Systems (NIPS'20). Curran Associates Inc., 
Red Hook, NY, USA, Article 1444, 17212–17223. 
Gessert,  N.,  Nielsen,  M.,  Shaikh,  M.,  Werner,  R.,  & 
Schlaefer,  A.  (2020).  Skin  lesion  classification  using 
ensembles of  multi-resolution  efficientnets with  Meta 
Data.  MethodsX,  7,  100864.  https://doi.org/10.1016/ 
j.mex.2020.100864. 
Setiawan,  A.  W.  (2020). Effect  of  color  enhancement  on 
early  detection  of  skin  cancer  using  convolutional 
neural network. 2020 IEEE International Conference on 
Informatics, IoT, and Enabling Technologies (ICIoT). 
https://doi.org/10.1109/iciot48696.2020.9089631.