
ogy whole-slide images using a human and model ob-
server evaluation. Journal of Pathology Informatics,
3:17.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
LeCun, Y., Hinton, G., and Bengio, Y. (2015). Deep learn-
ing. Nature, 521:436–444.
Lee, S., Cho, J., and Kim, S. W. (2021). Automatic classifi-
cation on patient-level breast cancer metastases.
LeNail, A. (2019). Nn-svg: Publication-ready neural net-
work architecture schematics. Journal of Open Source
Software, 4(33):747.
Li, J., Yang, S., Huang, X., Da, Q., Yang, X., ..., Z. H.,
and Li, H. (2019). Signet ring cell detection with a
semi-supervised learning framework. In Information
Processing in Medical Imaging, volume 11492, pages
842–854.
Litjens, G., Bandi, P., Bejnordi, B. E., Geessink, O., Balken-
hol, M., Bult, P., ..., and van der Laak, J. (2018). 1399
h&e-stained sentinel lymph node sections of breast
cancer patients: The camelyon dataset. GigaScience,
7(6).
Mi, W., Li, J., Guo, Y., Ren, X., Liang, Z., Zhang, T., and
Zou, H. (2021). Deep learning-based multi-class clas-
sification of breast digital pathology images. Cancer
Management and Research, 13.
Nounou, M. I., ElAmrawy, F., Ahmed, N., Abdelraouf, K.,
Goda, S., and Syed-Sha-Qhattal, H. (2015). Breast
cancer: Conventional diagnosis and treatment modal-
ities and recent patents and technologies. Breast Can-
cer: Basic and Clinical Research, 9s2.
O’Shea, K. and Nash, R. (2015). An introduction to convo-
lutional neural networks. ArXiv e-prints, 10.
Otsu, N. (1979). Threshold selection method from gray-
level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66.
Pantanowitz, L., Farahani, N., and Parwani, A. (2015).
Whole slide imaging in pathology: advantages, lim-
itations, and emerging perspectives. Pathology and
Laboratory Medicine International, 7:23–33.
Phan, N. N., Hsu, C. Y., Huang, C. C., Tseng, L. M., and
Chuang, E. Y. (2021). Prediction of breast cancer re-
currence using a deep convolutional neural network
without region-of-interest labeling. Frontiers in On-
cology, 11.
Pinchaud, N. (2019). Camelyon17 challenge.
Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes,
M. P., ..., and Iyengar, S. S. (2018). A survey on
deep learning: Algorithms, techniques, and applica-
tions. ACM Computing Surveys, 51(5):1–36.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., ..., and Fei-Fei, L. (2015). Imagenet large
scale visual recognition challenge. International Jour-
nal of Computer Vision, 115:211–252.
Sari, C. T. and Gunduz-Demir, C. (2019). Unsupervised
feature extraction via deep learning for histopatholog-
ical classification of colon tissue images. IEEE Trans-
actions on Medical Imaging, 38(5):1139–1149.
Shi, Y., Olsson, L. T., Hoadley, K. A., Calhoun, B. C.,
Marron, J. S., Geradts, J., ..., and Troester, M. A.
(2023). Predicting early breast cancer recurrence from
histopathological images in the carolina breast cancer
study. npj Breast Cancer, 9:92.
Siegel, R. L., Miller, K. D., Wagle, N. S., and Jemal, A.
(2023). Cancer statistics, 2023. CA: A Cancer Journal
for Clinicians, 73(1):17–48.
Simonyan, K. and Zisserman, A. (2015). Very deep convo-
lutional networks for large-scale image recognition. In
ICLR.
Su, Z., Niazi, M. K. K., Tavolara, T. E., Niu, S., Tozbikian,
G. H., Wesolowski, R., and Gurcan, M. N. (2023).
Bcr-net: A deep learning framework to predict breast
cancer recurrence from histopathology images. PLoS
ONE, 18(4).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., ..., and Rabinovich, A. (2015). Go-
ing deeper with convolutions. In IEEE Conference on
Computer Vision and Pattern Recognition.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826.
Veta, M., Pluim, J. P., Diest, P. J. V., and Viergever, M. A.
(2014). Breast cancer histopathology image analysis:
A review. IEEE Transactions on Biomedical Engi-
neering, 61(5):1400–1411.
Wakili, M. A., Shehu, H. A., Sharif, M. H., Sharif, M.
H. U., Umar, A., Kusetogullari, H., ..., and Uyaver,
S. (2022). Classification of breast cancer histopatho-
logical images using densenet and transfer learning.
Computational Intelligence and Neuroscience, 2022.
Watkins, E. J. (2019). Overview of breast cancer. Jour-
nal of the American Academy of Physician Assistants,
32(10):13–17.
Xu, X., Xu, S., Jin, L., and Song, E. (2011). Characteristic
analysis of otsu threshold and its applications. Pattern
Recognition Letters, 32(7).
Zarella, M. D., Bowman, D., Aeffner, F., Farahani, N.,
Xthona, A., Absar, S. F., ..., and Hartman, D. J. (2019).
A practical guide to whole slide imaging a white pa-
per from the digital pathology association. Archives of
Pathology & Laboratory Medicine, 143:222–234.
Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021).
Dive into Deep Learning. Cambridge University
Press. https://D2L.ai.
BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms
414