year-old participants but never seen by the over-18-
year-old participants.
This view allows us to observe how the under-18-
year-olds are particularly active and active compared
to their over-18-year-old peers. This difference in
behavior could be because young people are more
sensitive and concerned about bullying. Their greater
involvement in the complex social dynamics that
foster bullying could be the reason for this interest.
Implementing more advanced cybersecurity
measures, such as data encryption, could be expected.
More excellent protection of sensitive information
can be ensured through modern techniques, helping
preserve privacy and prevent harmful phenomena
such as online bullying. In this context, cybersecurity
becomes essential to ensure a safer and more secure
digital environment, particularly considering how
actively young people are involved in online activities
(Carrera et al., 2022b; Castro, Impedovo, et al., 2023;
V. Dentamaro et al., 2021; Vincenzo Dentamaro et
al., 2018; Galantucci et al., 2021).
REFERENCES
Amara, M. I., Akkouche, A., Boutellaa, E., & Tayakout, H.
(2021). A Smartphone Application for Fall Detection
Using Accelerometer and ConvLSTM Network. 2020
2nd International Workshop on Human-Centric Smart
Environments for Health and Well-Being (IHSH), 92–
96. doi: 10.1109/IHSH51661.2021.9378743
Angelillo, M. T., Balducci, F., Impedovo, D., Pirlo, G., &
Vessio, G. (2019). Attentional Pattern Classification for
Automatic Dementia Detection. IEEE Access, 7,
57706–57716. doi: 10.1109/ACCESS.2019.2913685
Angelillo, M. T., Impedovo, D., Pirlo, G., & Vessio, G.
(2019). Performance-Driven Handwriting Task
Selection for Parkinson’s Disease Classification.
Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 11946 LNAI, 281–
293. doi: 10.1007/978-3-030-35166-3_20/COVER
Cannarile, A., Dentamaro, V., Galantucci, S., Iannacone,
A., Impedovo, D., & Pirlo, G. (2022). Comparing Deep
Learning and Shallow Learning Techniques for API
Calls Malware Prediction: A Study. Applied Sciences
2022, Vol. 12, Page 1645, 12(3), 1645. doi:
10.3390/APP12031645
Carrera, F., Dentamaro, V., Galantucci, S., Iannacone, A.,
Impedovo, D., & Pirlo, G. (2022a). Combining
Unsupervised Approaches for Near Real-Time
Network Traffic Anomaly Detection. Applied Sciences
2022, Vol. 12, Page 1759, 12(3), 1759. doi:
10.3390/APP12031759
Carrera, F., Dentamaro, V., Galantucci, S., Iannacone, A.,
Impedovo, D., & Pirlo, G. (2022b). Combining
Unsupervised Approaches for Near Real-Time
Network Traffic Anomaly Detection. Applied Sciences
2022, Vol. 12, Page 1759, 12(3), 1759. doi:
10.3390/APP12031759
Casilari, E., Santoyo-Ramón, J. A., & Cano-García, J. M.
(2017). UMAFall: A Multisensor Dataset for the
Research on Automatic Fall Detection. Procedia
Computer Science, 110, 32–39. doi:
10.1016/j.procs.2017.06.110
Castro, F., Dentamaro, V., Gattulli, V., & Impedovo, D.
(2023). Fall Detection with LSTM and Attention
Mechanism. WAMWB 2023 Advances of Mobile and
Wearable Biometrics 2023.
Castro, F., Impedovo, D., & Pirlo, G. (2023). A Medical
Image Encryption Scheme for Secure Fingerprint-
Based Authenticated Transmission. Applied Sciences
2023, Vol. 13, Page 6099, 13(10), 6099. doi:
10.3390/APP13106099
Cheriet, M., Dentamaro, V., Hamdan, M., Impedovo, D., &
Pirlo, G. (2023). Multi-speed transformer network for
neurodegenerative disease assessment and activity
recognition. Computer Methods and Programs in
Biomedicine, 230. doi: 10.1016/J.CMPB.2023.107344
Dehkordi, M. B., Zaraki, A., & Setchi, R. (2020). Feature
extraction and feature selection in smartphone-based
activity recognition. Procedia Computer Science, 176,
2655–2664. doi: 10.1016/j.procs.2020.09.301
Dentamaro, V., Convertini, V. N., Galantucci, S., Giglio,
P., Palmisano, T., & Pirlo, G. (2021). Ensemble
consensus: An unsupervised algorithm for anomaly
detection in network security data. CEUR
WORKSHOP PROCEEDINGS, 2940, 309–318.
Retrieved from https://ricerca.uniba.it/handle/
11586/377597
Dentamaro, Vincenzo, Impedovo, D., & Pirlo, G. (2018).
LICIC: Less Important Components for Imbalanced
Multiclass Classification. Information 2018, Vol. 9,
Page 317, 9(12), 317. doi: 10.3390/INFO9120317
Dentamaro, Vincenzo, Impedovo, D., & Pirlo, G. (2020).
Fall detection by human pose estimation and kinematic
theory. Proceedings - International Conference on
Pattern Recognition, 2328–2335. doi:
10.1109/ICPR48806.2021.9413331
Galantucci, S., Impedovo, D., & Pirlo, G. (2021). One time
user key: A user-based secret sharing XOR-ed model
for multiple user cryptography in distributed systems.
IEEE Access, 9, 148521–148534. doi:
10.1109/ACCESS.2021.3124637
Gattulli, V., Impedovo, D., Pirlo, G., & Sarcinella, L.
(2023). Human Activity Recognition for the
Identification of Bullying and Cyberbullying Using
Smartphone Sensors. Electronics 2023, Vol. 12, Page
261, 12(2), 261. doi: 10.3390/
ELECTRONICS12020261
Gattulli, V., Impedovo, D., Pirlo, G., & Semeraro, G.
(2023). Handwriting Task-Selection based on the
Analysis of Patterns in Classification Results on
Alzheimer Dataset. IEEESDS’23: Data Science
Techniques for Datasets on Mental and
Neurodegenerative Disorders.