large areas and network interference. In addition, we
also aim to explore other objective functions.
ACKNOWLEDGEMENTS
The authors are grateful for the support provided
by Vale S.A, Instituto Tecnol
´
ogico Vale, and by
the Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior (CAPES, Finance Code 001), and
Conselho Nacional de Desenvolvimento Cient
´
ıfico e
Tecnol
´
ogico (CNPq, grant 302629/2023-8).
REFERENCES
Agrawal, R., Faujdar, N., Romero, C. A. T., Sharma, O.,
Abdulsahib, G. M., Khalaf, O. I., Mansoor, R. F., and
Ghoneim, O. A. (2023). Classification and compari-
son of ad hoc networks: A review. Egyptian Informat-
ics Journal, 24(1):1–25.
Barbosa, R. P., Souza, M. J. F., and de Miranda Junior,
G. (2023). Mammography unit location: Reconcil-
ing maximum coverage and budgetary constraints. In
ICEIS (1), pages 187–194.
Bueno, H. d. O. (2021). Optimization of transmission pa-
rameter selection for single channel LORA Mesh gate-
way networks in rural environments (in Portuguese).
Master’s Thesis, Universidade Federal de Uberl
ˆ
andia.
Capdeville, R. M. A. and Vianna, D. S. (2013). Grasp
heuristics for the access point allocation problem in
an indoor wireless network (in portuguese). Sistemas
& Gest
˜
ao, 8(1):86–93.
Chen, Y., Lai, Z., and Huang, C. (2023). Optimizing spatial
location and service capacity of new schools toward
maximum equity in the distribution of educational re-
sources. Journal of Urban Planning and Develop-
ment, 149(3):04023027.
Daskin, M. S. and Maass, K. L. (2015). The p-median prob-
lem. In Location science, pages 21–45. Springer.
de Campos, M. V. A., de S
´
a, M. V. S. M., Rosa, P. M.,
Penna, P. H. V., de Souza, S. R., and Souza, M. J. F.
(2020). A mixed linear integer programming formula-
tion and a simulated annealing algorithm for the mam-
mography unit location problem. In ICEIS (1), pages
428–439.
Kim, K., Jeon, M., Shin, S., and Kim, S.-W. (2022). Finding
second hierarchy point for cooperative multi-vehicles
using p-median and voronoi diagram vertices. In 2022
International Conference on Electronics, Information,
and Communication (ICEIC), pages 1–4. IEEE.
Lorena, L. A. and Pereira, M. A. (2002). A la-
grangean/surrogate heuristic for the maximal cover-
ing location problem using hillman’s edition. Interna-
tional Journal of Industrial Engineering, 9:57–67.
Murad, A., Faruque, F., Naji, A., Tiwari, A., Qurnfulah,
E., Rahman, M., and Dewan, A. (2024). Optimiz-
ing health service location in a highly urbanized city:
Multi criteria decision making and p-median problem
models for public hospitals in jeddah city, ksa. Plos
one, 19(1):e0294819.
Ramadhanti, N. S., Ridwan, A. Y., and Pambudi, H. K.
(2020). Feasibility study of determination a new dis-
tribution warehouse location using p-median and ana-
lytical network process methods in one of the cement
industries. In IOP Conference Series: Materials Sci-
ence and Engineering, volume 982, page 012057. IOP
Publishing.
Sandoval, C., Adasme, P., San Juan, E., Soto, I., and Firooz-
abadi, A. D. (2021). Novel p-median-based formula-
tions for maximizing coverage in 5g/6g wireless net-
works. In 2021 Third South American Colloquium on
Visible Light Communications (SACVLC), pages 01–
05. IEEE.
Shibalabala, J. and Swart, T. G. (2020). Performance analy-
sis of wireless mesh networks for underground mines.
In 2020 International Conference on Artificial Intel-
ligence, Big Data, Computing and Data Communica-
tion Systems (icABCD), pages 1–6. IEEE.
Taleb, S. M., Meraihi, Y., Gabis, A. B., Mirjalili, S.,
and Ramdane-Cherif, A. (2022). Nodes placement
in wireless mesh networks using optimization ap-
proaches: A survey. Neural Computing and Appli-
cations, 34(7):5283–5319.
Zhang, Y., Berman, O., and Verter, V. (2009). Incorporating
congestion in preventive healthcare facility network
design. European Journal of Operational Research,
198(3):922–935.
A Decision Support System Based on a Mixed-Integer Linear Programming Model for Location of Routers in Open-Pit Mines
627