Journal of construction engineering and management
v. 142, p. 142.
Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021).
A comparative analysis of gradient boosting
algorithms. Artificial Intelligence Review, 54, (pp.
1937-1967). doi:https://doi.org/10.1007/s10462-020-
09896-5
Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E.
W., Verbakel, J. Y., & Van Calster, B. (2019). A
systematic review shows no performance benefit of
machine learning over logistic regression for clinical
prediction models. Journal of clinical epidemiology,
110, pp. 12-22.
Domingos, S. L., Carvalho, R. N., Carvalho, R. S., &
Ramos, G. N. (2016). dentifying it purchases
anomalies in the Brazilian Government Procurement
System using deep learning. 15th IEEE International
Conference on Machine Learning and Applications
(ICMLA) doi: 10.1109/ICMLA.2016.0129, (pp. 722-
727).
Gallego, J., Rivero, G., & Martínez, J. (2021). Preventing
rather than punishing: An early warning model of
malfeasance in public procurement. International
Journal of Forecasting 37.1, pp. 360-377.
García-Peñalvo, F., & Vázquez-Ingelmo, A. (2023). What
do we mean by GenAI? A systematic mapping of the
evolution, trends, and techniques involved in
Generative AI.
Gonzalez, B. (2023). Smart Surveys: An Automatic
Survey Generation and Analysis Tool. In Proceedings
of the 15th International Conference on Computer
Supported Education - Volume 2: CSEDU, (pp. 113-
119). doi:10.5220/0011985400003470
Guangxiang, L., & Chaojun, M. (2023). Measuring EFL
learners’ use of ChatGPT in informal digital learning
of English based on the technology acceptance model.
Innovation in Language Learning and Teaching, (pp.
1-14). doi:10.1080/17501229.2023.2240316
Hond, D., Asgari, H., & Jeffery, D. (2020). Verifying
Artificial Neural Network Classifier Performance
Using Dataset Dissimilarity Measures. 19th IEEE
International Conference on Machine Learning and
Applications (ICMLA) (pp. 115-121). IEEE.
doi:10.1109/ICMLA51294.2020.00027
Huber, M., & Imhof, D. (2019). Machine learning with
screens for detecting bid-rigging cartels. International
Journal of Industrial Organization 65, pp. 277-301.
Ivanov, D., & Nesterov, A. (2019). Identifying bid leakage
in procurement auctions: Machine learning approach.
Proceedings of the 2019 ACM Conference on
Economics and Computation., (pp. 69-70).
doi:https://doi.org/10.1145/3328526.3329642
Jaromir, S., Arav, A., Christopher, B., & Majd, S. (2023).
Large Language Models (GPT) Struggle to Answer
Multiple-Choice Questions About Code. International
Conference on Computer Supported Education.
Kasneci, E., Seßler, K., Küchemann, S., Bannert, M.,
Dementieva, D., Fischer, F., & ... & Kasneci, G.
(2023). ChatGPT for good? On opportunities and
challenges of large language models for education.
Learning and individual differences, (p. 103).
Kung, T. H., Cheatham, M., A., M., Sillos, C., De Leon,
L., Elepaño, C., & Tseng, V. (2023). Performance of
ChatGPT on USMLE: Potential for AI-assisted
medical education using large language models. PLoS
digital health, 2(2).
Leippold, M. (2023). Thus spoke GPT-3: Interviewing a
large-language model on climate finance. Finance
Research Letters. doi:https://doi.org/10.1016/j.
frl.2022.103617
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., & ... & Kiela, D. (2020). Retrieval-
augmented generation for knowledge-intensive NLP
tasks. Advances in Neural Information Processing
Systems, 33, (pp. 9459-9474).
Pérez, J. Q., Daradoumis, T., & Puig, J. M. (2020).
Rediscovering the use of chatbots in education: A
systematic literature review. Computer Applications in
Engineering Education 28.6, (pp. 1549-1565).
Savelka, J., Agarwal, A., Bogart, C., Song, Y., & Sakr, M.
(2023). Can generative pre-trained transformers (gpt)
pass assessments in higher education programming
courses? In Proceedings of the 28th Annual ACM
Conference on Innovation and Technology in
Computer Science Education, (pp. 117–123).
doi:https://doi.org/10.1145/3587102.3588792
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A
systematic literature review on applying CRISP-DM
process model. Procedia Computer Science, (pp. 526-
534). doi:https://doi.org/10.1016/j.procs.2021.01.199
Sun, T., & Sales, L. J. (2018). Predicting public
procurement irregularity: An application of neural
networks. Journal of Emerging Technologies in
Accounting 15.1, pp. 141-154.
Titirla, M., & Aretoulis, G. (2019). Neural network
models for actual duration of Greek highway projects.
Journal of Engineering, Design and Technology 17.6,
pp. 1323-1339.
Twizeyimana, J. D., & Andersson, A. (2019). The public
value of E-Government–A literature review.
Government information quarterly, pp. 167-178.
Wei, D., Jionghao, L., Hua, J., Tongguang, L., Yi-Shan,
T., Dragan, G., & Guanliang, C. (2023). Can Large
Language Models Provide Feedback to Students? A
Case Study on ChatGPT. IEEE International
Conference on Advanced Learning Technologies
(ICALT) doi: 10.1109/ICALT58122.2023.00100.
Yang, Q., Suh, J., Chen, N. C., & Ramos, G. (2018).
Grounding interactive machine learning tool design in
how non-experts actually build models., (pp. 573-
584).
Yuyan, C., Qiang, F., Yichen, Y., Zhihao, W., Ge, F.,
Dayiheng, L., . . . Yanghua, X. (2023). Hallucination
Detection: Robustly Discerning Reliable Answers in
Large Language Models. In Proceedings of the 32nd
ACM International Conference on Information and
Knowledge Management (CIKM '23), (pp. 245–255.).
doi:https://doi.org/10.1145/3583780.3614905.