Based Silent Speech Interface. 2007 IEEE International
Conference on Acoustics, Speech and Signal
Processing - ICASSP ’07, 1, I-1245-I–1248.
https://doi.org/10.1109/ICASSP.2007.366140
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet Classification with Deep Convolutional
Neural Networks. Advances in Neural Information
Processing Systems, 25. https://papers.nips.cc/
paper_files/paper/2012/hash/c399862d3b9d6b76c8436
e924a68c45b-Abstract.html
Ribeiro, M. S., Eshky, A., Richmond, K., & Renals, S.
(2019). Speaker-independent classification of phonetic
segments from raw ultrasound in child speech. ICASSP
2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
1328–1332.
https://doi.org/10.1109/ICASSP.2019.8683564
Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65(6), 386–408.
https://doi.org/10.1037/h0042519
Shahin, M., Ahmed, B., Smith, D. V., Duenser, A., & Epps,
J. (2019). Automatic Screening Of Children With
Speech Sound Disorders Using Paralinguistic Features.
2019 IEEE 29th International Workshop on Machine
Learning for Signal Processing (MLSP), 1–5.
https://doi.org/10.1109/MLSP.2019.8918725
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna,
Z. (2015). Rethinking the Inception Architecture for
Computer Vision (arXiv:1512.00567). arXiv.
http://arxiv.org/abs/1512.00567
Xie, X. (2008). A Review of Recent Advances in Surface
Defect Detection using Texture analysis Techniques.
ELCVIA: Electronic Letters on Computer Vision and
Image Analysis, 1–22.
Xiong, Y., Xu, K., Jiang, M., Cheng, L., Dou, Y., & Wang,
J. (2022). Improving the Classification of Phonetic
Segments from Raw Ultrasound Using Self-Supervised
Learning and Hard Example Mining. ICASSP 2022 -
2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 8262–8266.
https://doi.org/10.1109/ICASSP43922.2022.9746804
Xu, K., Roussel, P., Csapó, T. G., & Denby, B. (2017).
Convolutional neural network-based automatic
classification of midsagittal tongue gestural targets
using B-mode ultrasound images. The Journal of the
Acoustical Society of America, 141(6), EL531–EL537.
https://doi.org/10.1121/1.4984122
Xu, K., Yang, Y., Stone, M., Jaumard-Hakoun, A.,
Leboullenger, C., Dreyfus, G., Roussel, P., & Denby,
B. (2016). Robust contour tracking in ultrasound tongue
image sequences. Clinical Linguistics & Phonetics,
30(3–5), 313–327. https://doi.org/10.3109/026992
06.2015.1110714
You, K., Liu, B., Xu, K., Xiong, Y., Xu, Q., Feng, M.,
Csapó, T. G., & Zhu, B. (2023). Raw Ultrasound-Based
Phonetic Segments Classification Via Mask Modeling.
ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 1–5.
https://doi.org/10.1109/ICASSP49357.2023.10095156
Zhenhua Guo, Lei Zhang, & Zhang, D. (2010). A
Completed Modeling of Local Binary Pattern Operator
for Texture Classification. IEEE Transactions on Image
Processing, 19(6), 1657–1663. https://doi.org/10.1109/
TIP.2010.2044957
Zhu, J., Styler, W., & Calloway, I. C. (2018). Automatic
tongue contour extraction in ultrasound images with
convolutional neural networks. The Journal of the
Acoustical Society of America, 143(3_Supplement),
1966–1966. https://doi.org/10.1121/1.5036466
Automated Classification of Phonetic Segments in Child Speech Using Raw Ultrasound Imaging