6 CONCLUSIONS
In conclusion, this paper conducted simulations on
various configurations of nanoparticle aggregation,
calculating absorption bands for each scenario.
Subsequently, a novel fiber optics probe was
designed and fabricated, relying on the deposition of
nanoparticles on the thin fiber surface. The key
innovation lies in exploring the sensitivity of the first
and second peaks, corresponding to single and
aggregated nanoparticles, respectively. The
sensitivity to the surrounding refractive index was
found to be 90 nm/RIU for the first peak and 4 times
higher, at 450 nm/RIU, for the second peak. This
sensor holds promise for applications in sensing
chemical concentrations based on changes in the
surrounding refractive index around nanoparticles.
REFERENCES
Bastús, N. G., Comenge, J., & Puntes, V. (2011).
Kinetically Controlled Seeded Growth Synthesis of
Citrate-Stabilized Gold Nanoparticles of up to 200 nm:
Size Focusing versus Ostwald Ripening. Langmuir,
27(17), 11098–11105. https://doi.org/10.1021/la2019
38u
Chau, L.-K., Lin, Y.-F., Cheng, S.-F., & Lin, T.-J. (2006).
Fiber-optic chemical and biochemical probes based on
localized surface plasmon resonance. Sensors and
Actuators B: Chemical, 113(1), 100–105.
https://doi.org/10.1016/j.snb.2005.02.034
Choudhary, S., Esposito, F., Sansone, L., Giordano, M.,
Campopiano, S., & Iadicicco, A. (2023). Lossy Mode
Resonance Sensors in Uncoated Optical Fiber. IEEE
Sensors Journal, 23(14), 15607–15613. https://doi.org/
10.1109/JSEN.2023.3280675
Do, P. Q. T., Huong, V. T., Phuong, N. T. T., Nguyen, T.-
H., Ta, H. K. T., Ju, H., Phan, T. B., Phung, V.-D.,
Trinh, K. T. L., & Tran, N. H. T. (2020). The highly
sensitive determination of serotonin by using gold
nanoparticles (Au NPs) with a localized surface
plasmon resonance (LSPR) absorption wavelength in
the visible region. RSC Advances, 10(51), 30858–
30869. https://doi.org/10.1039/D0RA05271J
Esfahani Monfared, Y. (2020). Overview of Recent
Advances in the Design of Plasmonic Fiber-Optic
Biosensors. Biosensors, 10(7), 77. https://doi.org/10.33
90/bios10070077
Esposito, F., Srivastava, A., Sansone, L., Giordano, M.,
Campopiano, S., & Iadicicco, A. (2021). Label-Free
Biosensors Based on Long Period Fiber Gratings: A
Review. IEEE Sensors Journal, 21(11), 12692–12705.
https://doi.org/10.1109/JSEN.2020.3025488
Guerreiro, J. R. L., Frederiksen, M., Bochenkov, V. E., De
Freitas, V., Ferreira Sales, M. G., & Sutherland, D. S.
(2014). Multifunctional Biosensor Based on Localized
Surface Plasmon Resonance for Monitoring Small
Molecule–Protein Interaction. ACS Nano, 8(8), 7958–
7967. https://doi.org/10.1021/nn501962y
Hernandez-Romano, I., Monzon-Hernandez, D., Moreno-
Hernandez, C., Moreno-Hernandez, D., & Villatoro, J.
(2015). Highly Sensitive Temperature Sensor Based on
a Polymer-Coated Microfiber Interferometer. IEEE
Photonics Technology Letters, 27(24), 2591–2594.
https://doi.org/10.1109/LPT.2015.2478790
Huong, V. T., Phuong, N. T. T., Tai, N. T., An, N. T., Lam,
V. D., Manh, D. H., Chi, T. T. K., Mai, N. X. D., Phung,
V.-D., & Tran, N. H. T. (2021). Gold Nanoparticles
Modified a Multimode Clad-Free Fiber for
Ultrasensitive Detection of Bovine Serum Albumin.
Journal of Nanomaterials, 2021, 1–6. https://doi.org/
10.1155/2021/5530709
Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A.
(2006). Calculated Absorption and Scattering
Properties of Gold Nanoparticles of Different Size,
Shape, and Composition: Applications in Biological
Imaging and Biomedicine. The Journal of Physical
Chemistry B
, 110(14), 7238–7248. https://doi.org/
10.1021/jp057170o
Lei, H., Zhu, S., Liu, C., Zhang, W., Chen, C., & Yan, H.
(2023). Constructing the Au nanoparticle multimer on
optical fiber end face to enhance the signal of localized
surface plasmon resonance biosensors: A case study for
deoxynivalenol detection. Sensors and Actuators B:
Chemical, 380, 133380. https://doi.org/10.1016/j.snb.
2023.133380
Litti, L., & Meneghetti, M. (2019). Predictions on the SERS
enhancement factor of gold nanosphere aggregate
samples. Physical Chemistry Chemical Physics, 21(28),
15515–15522. https://doi.org/10.1039/C9CP02015B
Lu, J., Yu, Y., Qin, S., Li, M., Bian, Q., Lu, Y., Hu, X.,
Yang, J., Meng, Z., & Zhang, Z. (2022). High-
performance temperature and pressure dual-parameter
sensor based on a polymer-coated tapered optical fiber.
Optics Express, 30(6), 9714. https://doi.org/10.1364/
OE.452355
Mayer, K. M., & Hafner, J. H. (2011). Localized Surface
Plasmon Resonance Sensors. Chemical Reviews,
111(6), 3828–3857. https://doi.org/10.1021/cr100313v
Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M.
(2012). Gold Nanoparticles in Chemical and Biological
Sensing. Chemical Reviews, 112(5), 2739–2779.
https://doi.org/10.1021/cr2001178
Sansone, L., Campopiano, S., Pannico, M., Giordano, M.,
Musto, P., & Iadicicco, A. (2021). Photonic bandgap
influence on the SERS effect in metal-dielectric
colloidal crystals optical fiber probe. Sensors and
Actuators B: Chemical, 345, 130149. https://doi.org/
10.1016/j.snb.2021.130149
Soares, M. S., Vidal, M., Santos, N. F., Costa, F. M.,
Marques, C., Pereira, S. O., & Leitão, C. (2021a).
Immunosensing Based on Optical Fiber Technology:
Recent Advances. Biosensors, 11(9), 305.
https://doi.org/10.3390/bios11090305
Soares, M. S., Vidal, M., Santos, N. F., Costa, F. M.,
Marques, C., Pereira, S. O., & Leitão, C. (2021b).