
Carrarini, C., Russo, M., Dono, F., Di Pietro, M., Rispoli,
M. G., Di Stefano, V., Ferri, L., Barbone, F., Vitale, M.,
Thomas, A., Sensi, S. L., Onofrj, M., & Bonanni, L.
(2019). A Stage-Based Approach to Therapy in
Parkinson's Disease. Biomolecules, 9(8), 388.
https://doi.org/10.3390/biom9080388
Carrera, F ., Dentamaro, V ., Galantucci, S., Iannacone, A.,
Impedovo, D., & Pirlo, G. (2022). Combining
Unsupervised Approaches for Near Real-Time
Network Traffic Anomaly Detection. Applied Sciences
2022, V ol. 12, Page 1759, 12(3), 1759.
https://doi.org/10.3390/APP12031759
Chahine, L. M., Beach, T. G., Brumm, M. C., Adler, C. H.,
Coffey, C. S., Mosovsky, S., Caspell-Garcia, C.,
Serrano, G. E., Munoz, D. G., White, C. L., Crary, J. F.,
Jennings, D., Taylor, P., Foroud, T., Arnedo, V., Kopil,
C. M., Riley, L., Dave, K. D., & Mollenhauer, B.
(2020). In vivo distribution of α-synuclein in multiple
tissues and biofluids in Parkinson disease. Neurology,
95(9), E1267–E1284. https://doi.org/10.1212/
WNL.0000000000010404/ASSET/9180DD2D-0B1F-
49B1-AB62-0F2D21F3218D/ASSETS/GRAPHIC/
18TTU2B.JPEG
Chai, J., Wu, R., Li, A., Xue, C., Qiang, Y., Zhao, J., Zhao,
Q., & Yang, Q. (2023). Classification of mild cognitive
impairment based on handwriting dynamics and qEEG.
Computers in Biology and Medicine, 152, 106418.
https://doi.org/10.1016/j.compbiomed.2022.106418
Chandra, J., Muthupalaniappan, S., Shang, Z., Bose, S.,
Deng, R., Pecyna, E., Chen, A., Lin, R., Butts, D., &
Capo-Battaglia, A. (2021). Validation of dementia
diagnostics toolbox using interactive iPad technology.
Alzheimer’s & Dementia, 17, e052988.
https://doi.org/10.1002/ALZ.052988
Chen, Y., Qian, X., Zhang, Y., Su, W., Huang, Y., Wang,
X., Chen, X., Zhao, E., Han, L., & Ma, Y. (2022).
Prediction Models for Conversion From Mild
Cognitive Impairment to Alzheimer’s Disease: A
Systematic Review and Meta-Analysis. Frontiers in
Aging Neuroscience, 14, 840386.
https://doi.org/10.3389/fnagi.2022.840386
Cheriet, M., Dentamaro, V., Hamdan, M., Impedovo, D., &
Pirlo, G. (2023). Multi-speed transformer network for
neurodegenerative disease assessment and activity
recognition. Computer Methods and Programs in
Biomedicine, 230, 107344.
Cilia, N. D., De Stefano, C., Fontanella, F., Molinara, M.,
& Scotto Di Freca, A. (2019). Handwriting analysis to
support alzheimer’s disease diagnosis: a preliminary
study. In Computer Analysis of Images and Patterns:
18th International Conference, CAIP 2019, Salerno,
Italy, September 3–5, 2019, Proceedings, Part II
18 (pp. 143-151). Springer International Publishing.
De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., &
Scotto di Freca, A. (2019). Handwriting analysis to
support neurodegenerative diseases diagnosis: A
review. Pattern Recognition Letters, 121, 37–45.
https://doi.org/10.1016/j.patrec.2018.05.013
Dentamaro, V., Impedovo, D., & Pirlo, G. (2018). LICIC:
Less important components for imbalanced multiclass
classification. Information (Switzerland), 9(12).
https://doi.org/10.3390/info9120317
Drotár, P., Mekyska, J., Rektorová, I., Masarová, L.,
Smékal, Z., & Faundez-Zanuy, M. (2016). Evaluation
of handwriting kinematics and pressure for differential
diagnosis of Parkinson's disease. Artificial intelligence
in Medicine, 67, 39-46.
Dugger, B. N., & Dickson, D. W. (2017). Pathology of
Neurodegenerative Diseases. Cold Spring Harbor
Perspectives in Biology, 9(7).
https://doi.org/10.1101/CSHPERSPECT.A028035
Faundez-Zanuy, M., Fierrez, J., Ferrer, M. A., Diaz, M.,
Tolosana, R., & Plamondon, R. (2020). Handwriting
Biometrics: Applications and Future Trends in e-
Security and e-Health. Cognitive Computation, 12(5),
940–953. https://doi.org/10.1007/s12559-020-09755-z
Faundez-Zanuy, M., Mekyska, J., & Impedovo, D. (2021).
Online Handwriting, Signature and Touch Dynamics:
Tasks and Potential Applications in the Field of
Security and Health. Cognitive Computation, 13(5),
1406– 1421. https://doi.org/10.1007/s12559-021-
09938-2
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975).
‘Mini-mental state’. A practical method for grading the
cognitive state of patients for the clinician. Journal of
Psychiatric Research, 12(3), 189–198.
https://doi.org/10.1016/0022- 3956(75)90026-6
Gattulli, V., Impedovo, D., Pirlo, G., & Sarcinella, L.
(2023a). Human Activity Recognition for the
Identification of Bullying and Cyberbullying Using
Smartphone Sensors. Electronics, 12(2), 261.
https://doi.org/10.3390/ELECTRONICS12020261
Gattulli, V., Impedovo, D., Pirlo, G., & Semeraro, G.
(2022). Early Dementia Identification: On the Use of
Random Handwriting Strokes. In International
Graphonomics Conference (pp. 285-300). Cham:
Springer International Publishing.
Gattulli, V., Impedovo, D., Pirlo, G., & Semeraro, G.
(2023b). Handwriting Task-Selection based on the
Analysis of Patterns in Classification Results on
Alzheimer Dataset.
Gattulli, V., Impedovo, D., Pirlo, G., & Volpe, F. (2023c).
Touch events and human activities for continuous
authentication via smartphone. Scientific Reports 2023
13:1, 13(1), 1–7. https://doi.org/10.1038/s41598-023-
36780-3
Gmez-Ro, M., Moreno Caballero, M., Manuel Grriz
Sez, J., & Mnguez-Castellanos, A. (2016). Diagnosis
of Neurodegenerative Diseases: The Clinical
Approach. Current Alzheimer Research, 13(5), 469–
474. https://doi.org/10.2174/
1567205013666151116141603
Handzlik, D., Richmond, L. L., Skiena, S., Carr, M. A.,
Clouston, S. A. P., & Luft, B. J. (2023). Explainable
automated evaluation of the clock drawing task for
memory impairment screening. Alzheimer’ s &
Dementia: Diagnosis, Assessment & Disease
Monitoring, 15(2), e12441. https://doi.org/10.
1002/DAD2.12441
NeroPRAI 2024 - Workshop on Medical Condition Assessment Using Pattern Recognition: Progress in Neurodegenerative Disease and
Beyond
992