machine learning models. Comet. https://www.comet.
com/site/blog/understanding-hold-out-methods-for-t
raining-machine-learning-models.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Drelie Gelasca, E., Byun, J., Obara, B., and Manjunath, B.
(2008). Evaluation and benchmark for biological im-
age segmentation. In 2008 15th IEEE International
Conference on Image Processing, pages 1816–1819.
Fischer, A. H., Jacobson, K. A., Rose, J., and Zeller, R.
(2008). Hematoxylin and eosin staining of tissue and
cell sections. CSH Protoc, 2008:db.prot4986.
Fukui, H., Hirakawa, T., Yamashita, T., and Fujiyoshi, H.
(2019). Attention branch network: Learning of at-
tention mechanism for visual explanation. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10697–10706.
Gurina, T. S. and Simms, L. (2023). Histology, Staining.
StatPearls Publishing.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Huang, G., Liu, Z., Maaten, L. V. D., and Weinberger, K. Q.
(2017). Densely connected convolutional networks.
In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2261–2269, Los
Alamitos, CA, USA. IEEE Computer Society.
H
¨
ohn, J., Krieghoff-Henning, E., Jutzi, T. B., von Kalle,
C., Utikal, J. S., Meier, F., Gellrich, F. F., Hobels-
berger, S., Hauschild, A., Schlager, J. G., French, L.,
Heinzerling, L., Schlaak, M., Ghoreschi, K., Hilke,
F. J., Poch, G., Kutzner, H., Heppt, M. V., Haferkamp,
S., Sondermann, W., Schadendorf, D., Schilling, B.,
Goebeler, M., Hekler, A., Fr
¨
ohling, S., Lipka, D. B.,
Kather, J. N., Krahl, D., Ferrara, G., Haggenm
¨
uller,
S., and Brinker, T. J. (2021). Combining cnn-based
histologic whole slide image analysis and patient data
to improve skin cancer classification. European Jour-
nal of Cancer, 149:94–101.
Kingma, D. and Ba, J. (2014). Adam: A method for
stochastic optimization. International Conference on
Learning Representations.
Majumdar, S., Pramanik, P., and Sarkar, R. (2023). Gamma
function based ensemble of cnn models for breast can-
cer detection in histopathology images. Expert Sys-
tems with Applications, 213:119022.
Mao, A., Mohri, M., and Zhong, Y. (2023). Cross-entropy
loss functions: theoretical analysis and applications.
In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org.
Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. T.
(2017). Deep learning for healthcare: review, oppor-
tunities and challenges. Briefings in Bioinformatics,
19(6):1236–1246.
Poppi, S., Cornia, M., Baraldi, L., and Cucchiara, R. (2021).
Revisiting the evaluation of class activation mapping
for explainability: A novel metric and experimental
analysis. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 2299–2304.
Sch
¨
ottl, A. (2022). Improving the interpretability of grad-
cams in deep classification networks. Procedia Com-
puter Science, 200:620–628. 3rd International Con-
ference on Industry 4.0 and Smart Manufacturing.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2019). Grad-CAM: Visual
explanations from deep networks via gradient-based
localization. International Journal of Computer Vi-
sion, 128(2):336–359.
Shamir, L., Orlov, N., Mark Eckley, D., Macura, T. J., and
Goldberg, I. G. (2008). Iicbu 2008: a proposed bench-
mark suite for biological image analysis. Medical
& Biological Engineering & Computing, 46(9):943–
947.
Shihabuddin, A. R. and K., S. B. (2023). Multi cnn
based automatic detection of mitotic nuclei in breast
histopathological images. Computers in Biology and
Medicine, 158:106815.
Sirinukunwattana, K., Pluim, J. P., Chen, H., Qi, X., Heng,
P.-A., Guo, Y. B., Wang, L. Y., Matuszewski, B. J.,
Bruni, E., Sanchez, U., B
¨
ohm, A., Ronneberger, O.,
Cheikh, B. B., Racoceanu, D., Kainz, P., Pfeiffer,
M., Urschler, M., Snead, D. R., and Rajpoot, N. M.
(2017). Gland segmentation in colon histology im-
ages: The glas challenge contest. Medical Image
Analysis, 35:489–502.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and Zhu,
J. (2019). Explainable ai: A brief survey on history,
research areas, approaches and challenges. In Tang,
J., Kan, M.-Y., Zhao, D., Li, S., and Zan, H., edi-
tors, Natural Language Processing and Chinese Com-
puting, pages 563–574, Cham. Springer International
Publishing.
Yang, Z., He, X., Gao, J., Deng, L., and Smola, A. (2016).
Stacked attention networks for image question an-
swering. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 21–29.
You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). Im-
age captioning with semantic attention. In 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4651–4659, Los Alamitos, CA,
USA. IEEE Computer Society.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Tor-
ralba, A. (2016). Learning deep features for discrimi-
native localization. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
2921–2929, Los Alamitos, CA, USA. IEEE Computer
Society.
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., and He, Q. (2019). A comprehensive sur-
vey on transfer learning. CoRR, abs/1911.02685.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
464