
ACKNOWLEDGEMENTS
Work partially supported by Generalitat Valenciana
CIPROM/2021/077, Spanish Government projects
PID2020-113416RB-I00 and TED2021-131295B-
C32; TAILOR project funded by EU Horizon 2020
under GA No 952215; and TED2021-131295B-C32.
REFERENCES
Adoma, A. F., Henry, N.-M., and Chen, W. (2020). Compar-
ative analyses of bert, roberta, distilbert, and xlnet for
text-based emotion recognition. In 17th ICCWAMTIP,
pages 117–121. IEEE.
Alaparthi, S. and Mishra, M. (2021). Bert: A sentiment
analysis odyssey. Journal of Marketing Analytics,
9(2):118–126.
Alfonso, B., Vivancos, E., and Botti, V. (2017). Toward
formal modeling of affective agents in a BDI architec-
ture. ACM Trans. on Internet Technology, 17(1):5.
Cortiz, D. (2022). Exploring transformers models for emo-
tion recognition: a comparision of bert, distilbert,
roberta, xlnet and electra. In 3rd Int. Conf. on Con-
trol, Robotics and Intelligent System, pages 230–234.
de Melo, C., Gratch, J., and Carnevale, P. (2014). The im-
portance of cognition and affect for artificially intelli-
gent decision makers. In Proc. of the AAAI’14.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proc.NAACL-
HLT 2019, page 4171–4186.
Fan, L., Scheutz, M., Lohani, M., McCoy, M., and Stokes,
C. (2017). Do we need emotionally intelligent arti-
ficial agents? first results of human perceptions of
emotional intelligence in humans compared to robots.
In 17th Int. Conf. on Intelligent Virtual Agents, pages
129–141. Springer.
Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Barn-
den, J., and Reyes, A. (2015). Sentiment analysis of
figurative language in twitter. In Proc. 9th Int. Work-
shop on Semantic Evaluation, pages 470–478.
Gopalakrishnan, K., Hedayatnia, B., Chen, Q., Gottardi, A.,
Kwatra, S., Venkatesh, A., Gabriel, R., and Hakkani-
Tur, D. (2023). Topical-chat: Towards knowledge-
grounded open-domain conversations. arXiv preprint
arXiv:2308.11995.
Iqbal, T. and Qureshi, S. (2022). The survey: Text gen-
eration models in deep learning. Journal of King
Saud University-Computer and Information Sciences,
34(6):2515–2528.
Irfan, B., Narayanan, A., and Kennedy, J. (2020). Dynamic
emotional language adaptation in multiparty interac-
tions with agents. In Proc. 20th ACM Int. Conf. on
Intelligent Virtual Agents, pages 1–8.
Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., et al. (2023). Mistral 7b.
arXiv preprint arXiv:2310.06825.
Kim, T. and Vossen, P. (2021). Emoberta: Speaker-aware
emotion recognition in conversation with roberta.
arXiv preprint arXiv:2108.12009.
Kouloumpis, E., Wilson, T., and Moore, J. (2011). Twitter
sentiment analysis: The good the bad and the omg! In
Proc. of the Int. AAAI Conf. on Web and Social Media,
volume 5, pages 538–541.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen,
T. H., Sainz, O., Agirre, E., Heintz, I., and Roth, D.
(2023). Recent advances in natural language process-
ing via large pre-trained language models: A survey.
ACM Computing Surveys, 56(2):1–40.
Mitra, A., Del Corro, L., Mahajan, S., Codas, A., Simoes,
C., Agarwal, S., Chen, X., Razdaibiedina, A., Jones,
E., Aggarwal, K., et al. (2023). Orca 2: Teaching
small language models how to reason. arXiv preprint
arXiv:2311.11045.
Nagarhalli, T. P., Vaze, V., and Rana, N. (2021). Impact of
machine learning in natural language processing: A
review. In 2021 3rd Int. Conf. on Intelligent Commu-
nication Technologies and Virtual Mobile Networks,
pages 1529–1534. IEEE.
Nasukawa, T. and Yi, J. (2003). Sentiment analysis: Cap-
turing favorability using natural language processing.
In Proc. 2nd Int. Conf. on Knowledge capture, pages
70–77.
Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria,
E., and Mihalcea, R. (2019). Meld: A multimodal
multi-party dataset for emotion recognition in conver-
sations. In Proc.57th Annual Meeting of Association
for Computational Linguistics, page 527–536.
Rao, A. S., Georgeff, M. P., et al. (1995). BDI agents: from
theory to practice. In Icmas, volume 95, pages 312–
319.
Rincon, J., Bajo, J., Fernandez, A., Julian, V., and Carras-
cosa, C. (2016). Using emotions for the development
of human-agent societies. Frontiers Information Tech-
nology & Electronic Engineering, 17(4):325–337.
Taverner, J., Vivancos, E., and Botti, V. (2019). Towards
a computational approach to emotion elicitation in af-
fective agents. In Proc. ICAART’19, pages 275–280.
Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., et al. (2023).
Llama 2: Open foundation and fine-tuned chat mod-
els. arXiv preprint arXiv:2307.09288.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., et al.
(2022). Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.
EAA 2024 - Special Session on Emotions and Affective Agents
498