
ACKNOWLEDGEMENTS
This study was financed in part by the Coordenac¸
˜
ao
de Aperfeic¸oamento de Pessoal de N
´
ıvel Supe-
rior - Brasil (CAPES), the National Council for
Scientific and Technological Development CNPq
(Grant #313643/2021-0) and N
´
ucleo de Informac¸
˜
ao
e Coordenac¸
˜
ao do Ponto BR - NIC.br.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Man
´
e, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Vi
´
egas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.
Bahera H. Nayef, Siti Norul Huda Sheikh Abdullah, R. S.
A. M. S. (2023). Text extraction with optimal bi-lstm.
Computers, Materials & Continua, 76(3):3549–3567.
Dalli, A. (2022). Impact of hyperparameters on deep learn-
ing model for customer churn prediction in telecom-
munication sector. Mathematical Problems in Engi-
neering, 2022:4720539.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Burstein,
J., Doran, C., and Solorio, T., editors, Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Min-
nesota. Association for Computational Linguistics.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.
org.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor,
J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
R
´
ıo, J. F., Wiebe, M., Peterson, P., G
´
erard-Marchant,
P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E. (2020). Array pro-
gramming with NumPy. Nature, 585(7825):357–362.
Huang, W., Zong, Y., Shi, Z., Wang, L., and Liu, P. (2022).
Pepc: A deep parallel convolutional neural network
model with pre-trained embeddings for dga detection.
In 2022 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8.
Kaggle Team (2023). Kaggle. https://www.kaggle.com/.
Kambourakis, G., Anagnostopoulos, M., Meng, W., and
Zhou, P. (2019). Botnets: Architectures, Countermea-
sures, and Challenges. CRC Press, Boca Raton, 1 edi-
tion.
Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.
Koutsoukas, A., Monaghan, K. J., Li, X., and Huan, J.
(2017). Deep-learning: investigating deep neural net-
works hyper-parameters and comparison of perfor-
mance to shallow methods for modeling bioactivity
data. Journal of Cheminformatics, 9(1):42.
Majestic (2023). Majestic Million. https://pt.majestic.com/
reports/majestic-million.
NetLab 360 (2022). NetLab360. https://data.netlab.360.
com/.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep contex-
tualized word representations.
Piras, G., Pintor, M., Demetrio, L., and Biggio, B. (2022).
Explaining machine learning dga detectors from dns
traffic data.
Ren, F., Jiang, Z., Wang, X., and Liu, J. (2020). A dga
domain names detection modeling method based on
integrating an attention mechanism and deep neural
network. Cybersecurity, 3:4.
Salehin, I. and Kang, D.-K. (2023). A review on dropout
regularization approaches for deep neural networks
within the scholarly domain. Electronics, 12(14).
Shahzad, H., Sattar, A., and Skandaraniyam, J. (2021). Dga
domain detection using deep learning. pages 139–143.
Silveira, M. R., Marcos da Silva, L., Cansian, A. M., and
Kobayashi, H. K. (2021). Detection of newly reg-
istered malicious domains through passive dns. In
2021 IEEE International Conference on Big Data (Big
Data), pages 3360–3369.
Tanenbaum, A. S., Feamster, N., and Wetherall, D. (2021).
Redes de Computadores. Pearson Education do Brasil,
Porto Alegre, 6 edition.
The Pandas Development Team (2020). pandas-dev/pandas:
Pandas.
Vranken, H. and Alizadeh, H. (2022). Detection of dga-
generated domain names with tf-idf. Electronics,
11(3).
Wang, Y., Pan, R., Wang, Z., and Li, L. (2023). A classi-
fication method based on cnn-bilstm for difficult de-
tecting dga domain name. In 2023 IEEE 13th Inter-
national Conference on Electronics Information and
Emergency Communication (ICEIEC), pages 17–21.
Wong, A. D. (2023). Detecting domain-generation al-
gorithm (dga) based fully-qualified domain names
(fqdns) with shannon entropy.
Yu, B., Pan, J., Hu, J., Nascimento, A., and De Cock, M.
(2018). Character level based detection of dga do-
main names. In 2018 International Joint Conference
on Neural Networks (IJCNN), pages 1–8.
Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2023).
Dive into Deep Learning. Cambridge University
Press. https://D2L.ai.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
174