
com/docs/emulator-suite/connect firestore?hl=pt-br.
Last checked on Dec 03, 2023.
Google (2023h). Firestore pricing. https://cloud.google.
com/firestore/pricing?hl=pt-br. Last checked on
Dec 03, 2023.
Karras, A., Karras, C., Samoladas, D., Giotopoulos, K. C.,
and Sioutas, S. (2022). Query optimization in nosql
databases using an enhanced localized r-tree index. In
International Conference on Information Integration
and Web, pages 391–398. Springer.
Kesavan, R., Gay, D., Thevessen, D., Shah, J., and Mohan,
C. (2023). Firestore: The nosql serverless database for
the application developer. In 39th IEEE International
Conference on Data Engineering, ICDE 2023, pages
3376–3388, Anaheim, CA, USA. IEEE.
Kim, T., Li, W., Behm, A., Cetindil, I., Vernica, R., Borkar,
V., Carey, M. J., and Li, C. (2020). Similarity query
support in big data management systems. Information
Systems, 88:101455.
Kim, T., Li, W., Behm, A., Cetindil, I., Vernica, R., Borkar,
V. R., Carey, M. J., and Li, C. (2018). Supporting
similarity queries in apache asterixdb. In EDBT, pages
528–539.
Koutroumanis, N. and Doulkeridis, C. (2021). Scal-
able spatio-temporal indexing and querying over a
document-oriented nosql store. In EDBT, pages 611–
622.
Li, R., He, H., Wang, R., Ruan, S., Sui, Y., Bao, J., and
Zheng, Y. (2020). Trajmesa: A distributed nosql stor-
age engine for big trajectory data. In 2020 IEEE
36th International Conference on Data Engineering
(ICDE), pages 2002–2005.
Lu, W., Hou, J., Yan, Y., Zhang, M., Du, X., and Mosci-
broda, T. (2017). Msql: efficient similarity search in
metric spaces using sql. The VLDB Journal, pages
3–26.
MongoDB (2023). Mongodb. https://www.mongodb.com/.
Last checked on Dec 03, 2023.
Nesso, M. R., Cazzolato, M. T., Scabora, L. C., Oliveira,
P. H., Spadon, G., de Souza, J. A., Oliveira, W. D.,
Chino, D. Y., Rodrigues, J. F., Traina, A. J., et al.
(2018). Rafiki: Retrieval-based application for imag-
ing and knowledge investigation. In 2018 IEEE 31st
International Symposium on Computer-Based Medi-
cal Systems (CBMS), pages 71–76. IEEE.
Niwattanakul, S., Singthongchai, J., Naenudorn, E., and
Wanapu, S. (2013). Using of jaccard coefficient for
keywords similarity. In Proceedings of the interna-
tional multiconference of engineers and computer sci-
entists, volume 1, pages 380–384.
Qader, M. A., Cheng, S., and Hristidis, V. (2018). A com-
parative study of secondary indexing techniques in
lsm-based nosql databases. In Proceedings of the 2018
International Conference on Management of Data,
page 551–566, Houston, TX, USA. Association for
Computing Machinery.
Roussopoulos, N., Kelley, S., and Vincent, F. (1995). Near-
est neighbor queries. In Proceedings of the 1995 ACM
SIGMOD international conference on Management of
data, pages 71–79.
Shimomura, L. C., Oyamada, R. S., Vieira, M. R., and
Kaster, D. S. (2021). A survey on graph-based meth-
ods for similarity searches in metric spaces. Informa-
tion Systems, 95:101507.
The Apache Software foundation (2023). Apache asterixdb.
https://asterixdb.apache.org/. Last checked on Dec 03,
2023.
Traina-Jr, C., Traina, A., Seeger, B., and Faloutsos, C.
(2000). Slim-trees: High performance metric trees
minimizing overlap between nodes. In Advances
in Database Technology—EDBT 2000: 7th Interna-
tional Conference on Extending Database Technology
Konstanz, Germany, March 27–31, 2000 Proceedings,
pages 51–65. Springer.
Unxos GmbH (2023). Geonames: geographical database.
https://www.geonames.org/. Last checked on Dec 03,
2023.
William Zaniboni Silva (2024). Similarity slim -
database and image group (gbdi-usp) - source
code. https://github.com/WilliamZaniboni/ICEIS-
2024-Similarity-Slim-Python. Last checked on
Feb 10, 2024.
Wilson, D. R. and Martinez, T. R. (1997). Improved het-
erogeneous distance functions. Journal of artificial
intelligence research, 6:1–34.
Yan, K., Peng, Y., Sandfort, V., Bagheri, M., Lu, Z., and
Summers, R. M. (2019). Holistic and comprehen-
sive annotation of clinically significant findings on di-
verse ct images: learning from radiology reports and
label ontology. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 8523–8532.
Yan, K., Wang, X., Lu, L., and Summers, R. M. (2018).
Deeplesion: automated mining of large-scale lesion
annotations and universal lesion detection with deep
learning. Journal of medical imaging, 5(3):036501–
036501.
Zhang, D. and Lu, G. (2003). Evaluation of similarity mea-
surement for image retrieval. In International Con-
ference on Neural Networks and Signal Processing,
2003. Proceedings of the 2003, volume 2, pages 928–
931 Vol.2.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
106