
K. Q. (2018). Densely Connected Convolutional Net-
works.
Huang, J., Shlobin, N. A., Lam, S. K., and DeCuypere,
M. (2022). Artificial Intelligence Applications in Pe-
diatric Brain Tumor Imaging: A Systematic Review.
World Neurosurgery, 157:99–105.
Jakesh Bohaju. Brain Tumor.
Lapointe, S., Perry, A., and Butowski, N. A. (2018).
Primary brain tumours in adults. The Lancet,
392(10145):432–446.
Latif, G., Mohsin Butt, M., Khan, A. H., Omair Butt,
M., and Al-Asad, J. F. (2017). Automatic Multi-
modal Brain Image Classification Using MLP and 3D
Glioma Tumor Reconstruction. In 2017 9th IEEE-
GCC Conference and Exhibition (GCCCE), pages 1–
9, Manama. IEEE.
Lee, M. (2022). Brain Tumor, Detection from MRI images
[Deep CN]. Accessed 10-01-2024.
Ma, X. and Jia, F. (2020). Brain Tumor Classification with
Multimodal MR and Pathology Images. In Crimi,
A. and Bakas, S., editors, Brainlesion: Glioma, Mul-
tiple Sclerosis, Stroke and Traumatic Brain Injuries,
volume 11993, pages 343–352. Springer International
Publishing, Cham.
McFaline-Figueroa, J. R. and Lee, E. Q. (2018). Brain
Tumors. The American Journal of Medicine,
131(8):874–882.
Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., Kirby, J., Burren, Y., Porz, N., Slot-
boom, J., Wiest, R., Lanczi, L., Gerstner, E., We-
ber, M.-A., Arbel, T., Avants, B. B., Ayache, N.,
Buendia, P., Collins, D. L., Cordier, N., Corso, J. J.,
Criminisi, A., Das, T., Delingette, H., Demiralp, C.,
Durst, C. R., Dojat, M., Doyle, S., Festa, J., Forbes,
F., Geremia, E., Glocker, B., Golland, P., Guo, X.,
Hamamci, A., Iftekharuddin, K. M., Jena, R., John,
N. M., Konukoglu, E., Lashkari, D., Mariz, J. A.,
Meier, R., Pereira, S., Precup, D., Price, S. J., Ra-
viv, T. R., Reza, S. M. S., Ryan, M., Sarikaya, D.,
Schwartz, L., Shin, H.-C., Shotton, J., Silva, C. A.,
Sousa, N., Subbanna, N. K., Szekely, G., Taylor, T. J.,
Thomas, O. M., Tustison, N. J., Unal, G., Vasseur, F.,
Wintermark, M., Ye, D. H., Zhao, L., Zhao, B., Zi-
kic, D., Prastawa, M., Reyes, M., and Van Leemput,
K. (2015). The Multimodal Brain Tumor Image Seg-
mentation Benchmark (BRATS). IEEE Transactions
on Medical Imaging, 34(10):1993–2024.
Mohsen, H., El-Dahshan, E.-S. A., El-Horbaty, E.-S. M.,
and Salem, A.-B. M. (2018). Classification using deep
learning neural networks for brain tumors. Future
Computing and Informatics Journal, 3(1):68–71.
Nayak, D. R., Padhy, N., Mallick, P. K., Zymbler, M., and
Kumar, S. (2022). Brain Tumor Classification Using
Dense Efficient-Net. Axioms, 11(1):34.
Pei, L., Vidyaratne, L., Hsu, W.-W., Rahman, M. M., and
Iftekharuddin, K. M. (2020). Brain Tumor Classifi-
cation Using 3D Convolutional Neural Network. In
Crimi, A. and Bakas, S., editors, Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain In-
juries, volume 11993, pages 335–342. Springer Inter-
national Publishing, Cham.
Ranjbarzadeh, R., Caputo, A., Tirkolaee, E. B., Ja-
farzadeh Ghoushchi, S., and Bendechache, M. (2023).
Brain tumor segmentation of MRI images: A com-
prehensive review on the application of artificial in-
telligence tools. Computers in Biology and Medicine,
152:106405.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2019). Mobilenetv2: Inverted residuals
and linear bottlenecks.
Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. (2016). Grad-CAM: Why
did you say that? Visual explanations from deep
networks via gradient-based localization. CoRR,
abs/1610.02391.
Simonyan, K. and Zisserman, A. (2015). Very deep convo-
lutional networks for large-scale image recognition.
Soenksen, L. R., Ma, Y., Zeng, C., Boussioux, L., Villalo-
bos Carballo, K., Na, L., Wiberg, H. M., Li, M. L.,
Fuentes, I., and Bertsimas, D. (2022). Integrated mul-
timodal artificial intelligence framework for health-
care applications. npj Digital Medicine, 5(1):149.
Vermeulen, C., Pag
`
es-Gallego, M., Kester, L., Kranendonk,
M. E. G., Wesseling, P., Verburg, N., de Witt Hamer,
P., Kooi, E. J., Dankmeijer, L., van der Lugt, J., van
Baarsen, K., Hoving, E. W., Tops, B. B. J., and de Rid-
der, J. (2023). Ultra-fast deep-learned CNS tumour
classification during surgery. Nature, 622(7984):842–
849.
Villanueva-Meyer, J. E., Mabray, M. C., and Cha, S. (2017).
Current Clinical Brain Tumor Imaging. Neurosurgery,
81(3):397–415.
WHO Classification of Tumours Editorial Board, editor
(2022). WHO Classification of Tumours: Central Ner-
vous System Tumours. World Health Organization,
Lyon, 5th edition edition.
Yang, C.-H., Chang, P.-H., Lin, K.-L., and Cheng, K.-S.
(2016). Outcomes comparison between smartphone
based self-learning and traditional speech therapy for
naming practice. In 2016 International Conference on
System Science and Engineering (ICSSE), pages 1–4,
Puli, Taiwan. IEEE.
NeroPRAI 2024 - Workshop on Medical Condition Assessment Using Pattern Recognition: Progress in Neurodegenerative Disease and
Beyond
1000