
PDPG 88887.708960/2022-00 – PUC/MG - IN-
FORM
´
ATICA and Finance Code 001).
REFERENCES
surprise documentation. https://surprise.readthedocs.io/
en/stable/matrix
factorization.html, note = Accessed:
2023-07-31.
Adomavicius, G. and Kwon, Y. (2009). Toward more
diverse recommendations: Item re-ranking methods
for recommender systems. Workshop on Information
Technologies and Systems.
Ahanger, A., Aalam, S., Bhat, M., and Assad, A. (2022).
Popularity bias in recommender systems - a review.
pages 431–444.
Ai, J., Su, Z., Wang, K., Wu, C., and Peng, D. (2020).
Decentralized collaborative filtering algorithms based
on complex network modeling and degree centrality.
IEEE Access, 8:151242 – 151249.
Al Janabi, S. and Kadiam, N. (2020). Recommendation
system of big data based on pagerank clustering al-
gorithm. pages 149–171.
Al Sultany, G. and Ghaidaa, A. (2022). Enhancing recom-
mendation system using adapted personalized pager-
ank algorithm. In 2022 5th International Conference
on Engineering Technology and its Applications (IIC-
ETA), pages 1–5.
Anelli, V. W., Bellog
´
ın, A., Noia, T. D., Jannach, D., and
Pomo, C. (2022). Top-n recommendation algorithms:
A quest for the state-of-the-art.
AWS (2022). Aws developer guide. https:
//docs.aws.amazon.com/personalize/latest/dg/
native-recipe-popularity.html.
Borges, R. and Stefanidis, K. (2021). On mitigating pop-
ularity bias in recommendations via variational au-
toencoders. 36th Annual ACM Symposium on Applied
Computing.
Bressan, M. and Pretto, L. (2011). Local computation of
pagerank. 20th ACM International Conference on In-
formation and Knowledge Management.
C. Geyik, S. A. and Kenthapadi, K. (2019). Fairness-aware
ranking in search & recommendation systems with ap-
plication to linkedin talent search. 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining.
Cano, E. and Morisio, M. (2017). Hybrid recommender
systems: A systematic literature review. Intelligent
Data Analysis, 21(6):1487–1524.
Castells, P., Vargas, S., and Wang, J. (2011). Novelty and
diversity metrics for recommender systems: Choice,
discovery and relevance. Proceedings of International
Workshop on Diversity in Document Retrieval (DDR).
D. Goldberg, e. a. (1992). Using collaborative filtering to
weave an information tapestry. Communication of the
ACM, 35(12):61–70.
D. Jannach, M. Zanker, A. F. and Friedrich, G. (2010). Rec-
ommender systems, an introduction.
D. M. Ferrari, N. F. and Cremonesi, P. (2022). Offline evalu-
ation of recommender systems in a user interface with
multiple carousels. Mathematical Problems in Engi-
neering, pages 1–13.
D. Yin, S. B. and Zhang, H. (2010). Are bad reviews always
stronger than good? asymmetric negativity bias in the
formation of online consumer trust. 31st International
Conference on Information Systems (ICIS’10), pages
1 – 18.
Didi, T., Guy, I., Livne, A., Dagan, A., Rokach, L., and
Shapira, B. (2023). Promoting tail item recommenda-
tions in e-commerce. page 194–203.
E. Mena-Maldonado, e. a. (2021). Popularity bias in false-
positive metrics for recommender systems evaluation.
ACM Transactions on Information Systems, 39(3).
F. Ricci, L. Rokach, B. S. and Kantor, P. (2011). Recom-
mender systems handbook. pages 73 – 140.
Google (2011). Facts about google.
www.google.com/competition/howgooglesearchworks.
H. Abdollahpouri, R. B. and Mobasher, B. (2017). Control-
ling popularity bias in learning-to-rank recommenda-
tion. RecSys’17.
H. Abdollahpouri, R. B. and Mobasher, B. (2019). Man-
aging popularity bias in recommender systems with
personalized re-ranking. pages 242 – 251.
H. Abdollahpouri, M. Mansoury, R. B. and Mobasher, B.
(2020). The connection between popularity bias, cal-
ibration, and fairness in recommendation. RecSys
2020.
Harper, F. and Konstan, J. (2016). The movielens datasets:
History and context. ACM Transactions on Interactive
Intelligent Systems, 5.
Instagram, B. T. (2016). Increasing
website conversions with instagram.
https://business.instagram.com/blog/increasing-
website-conversions-with-instagram.
J. Ben Schafer, Dan Frankowski, J. H. . S. S. (2007). Col-
laborative filtering recommender system. The Adap-
tive Web, 17(6):291–324.
J. Lu, e. a. (2017). Trust-enhanced matrix factorization us-
ing pagerank for recommender system.
Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., and Salehi,
M. (2018). Evaluating collaborative filtering recom-
mender algorithm: A survey. IEEE Access, 6:74003–
74024.
Jannach, D. (2015). What recommenders recommend: An
analysis of recommendation biases and possible coun-
termeasures. User-Modeling and User-Adapted Inter-
action, 25:427 – 491.
K. Li, e. a. (2019). Deep probabilistic matrix factorization
framework for online collaborative filtering.
Karboua, S., Harrag, F., Meziane, F., and Boutadjine, A.
(2022). Mitigation of popularity bias in recommenda-
tion systems: A selective review.
Knijnenburg, B., Willemsen, M., Gantner, Z., Soncu, H.,
and Newell, C. (2012). Explaining the user experience
of recommender systems. User Modeling and User-
Adapted Interaction, page 441–504.
Koren, Y. (2009). The bellkor solution to the netflix grand
prize.
EQNet: A Post-Processing Approach to Manage Popularity Bias in Collaborative Filter Recommender Systems
931