
roc curve in the evaluation of machine learning algo-
rithms. Pattern Recognition, 30(7):1145–1159.
Braiki, K. and Youssef, H. (2020). Fuzzy-logic-based multi-
objective best-fit-decreasing virtual machine realloca-
tion. The Journal of Supercomputing, 76:427–454.
Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.,
Xu, Z., Bedregal, B., Montero, J., Hagras, H., Her-
rera, F., and Baets, B. D. (2016). A historical account
of types of fuzzy sets and their relationships. IEEE
Transactions on Fuzzy Systems, 24(1).
Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose,
C. A., and Buyya, R. (2011). Cloudsim: a toolkit for
modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algo-
rithms. Software: Practice and experience, 41(1):23–
50.
Campisi, G., De Baets, B., Gambarelli, L., Muzzioli, S.,
et al. (2022). Forecasting returns in the us mar-
ket through fuzzy rule-based classification systems.
DEMB WORKING PAPER SERIES.
Cord
´
on, O., del Jes
´
us, M. J., and Herrera, F. (1998). Ana-
lyzing the reasoning mechanisms in fuzzy rule based
classification systems. Mathware and Soft Computing,
5(2-3):321–332.
Cord
´
on, O., Del Jesus, M. J., and Herrera, F. (1999). A pro-
posal on reasoning methods in fuzzy rule-based clas-
sification systems. International Journal of Approxi-
mate Reasoning, 20(1):21–45.
Czmil, A. (2023). Comparative study of fuzzy rule-based
classifiers for medical applications. Sensors, 23(2).
Ferdaus, M. H., Murshed, M., Calheiros, R. N., and Buyya,
R. (2014). Virtual machine consolidation in cloud data
centers using aco metaheuristic. In European confer-
ence on parallel processing, pages 306–317. Springer.
Gourisaria, M. K., Samanta, A., Saha, A., Patra, S. S., and
Khilar, P. M. (2020). An extensive review on cloud
computing. Data Engineering and Communication
Technology, pages 53–78.
He, T. and Buyya, R. (2023). A taxonomy of live migra-
tion management in cloud computing. ACM Comput.
Surv., 56(3).
H
¨
uhn, J. and H
¨
ullermeier, E. (2009). Furia: an algorithm
for unordered fuzzy rule induction. Data Mining and
Knowledge Discovery, 19:293–319.
Jumnal, A. and Kumar, S. D. (2021). Optimal vm placement
approach using fuzzy reinforcement learning for cloud
data centers. In 2021 Third International Conference
on Intelligent Communication Technologies and Vir-
tual Mobile Networks (ICICV). IEEE.
Lucca, G., Sanz, J. A., Dimuro, G. P., Bedregal, B., and
Bustince, H. (2020). A proposal for tuning the α
parameter in c α c-integrals for application in fuzzy
rule-based classification systems. Natural Computing,
19(3):533–546.
Lughofer, E. (2022). Evolving fuzzy and neuro-fuzzy sys-
tems: Fundamentals, stability, explainability, useabil-
ity, and applications. In Handbook on Computer
Learning and Intelligence: Volume 2: Deep Learn-
ing, Intelligent Control and Evolutionary Computa-
tion, pages 133–234. World Scientific.
Mittal, M., Balas, V. E., Goyal, L. M., and Kumar, R.
(2019). Big data processing using spark in cloud.
Springer.
Mongia, V. and Sharma, A. (2021). Performance and
resource-aware virtual machine selection using fuzzy
in cloud environment. In Progress in Advanced Com-
puting and Intelligent Engineering: Proceedings of
ICACIE 2020, pages 413–426. Springer.
Moura, B. M., Schneider, G. B., Yamin, A. C., Santos, H.,
Reiser, R. H., and Bedregal, B. (2022). Interval-valued
fuzzy logic approach for overloaded hosts in consoli-
dation of virtual machines in cloud computing. Fuzzy
Sets and Systems, 446:144–166.
Nathani, A., Chaudhary, S., and Somani, G. (2012). Policy
based resource allocation in iaas cloud. Future Gen-
eration Computer Systems, 28(1):94–103.
Negi, S., Rauthan, M. M. S., Vaisla, K. S., and Panwar, N.
(2021). Cmodlb: an efficient load balancing approach
in cloud computing environment. The Journal of Su-
percomputing, 77.
Pudil, P., Novovi
ˇ
cov
´
a, J., and Kittler, J. (1994). Floating
search methods in feature selection. Pattern Recogni-
tion Letters, 15(11):1119–1125.
Rozehkhani, S. M. and Mahan, F. (2022). Vm consolida-
tion improvement approach using heuristics granular
rules in cloud computing environment. Information
Sciences, 596.
Samantaray, S., El-Arroudi, K., Joos, G., and Kamwa, I.
(2010). A fuzzy rule-based approach for islanding de-
tection in distributed generation. IEEE transactions
on power delivery, 25(3):1427–1433.
Sambuc, R. (1975). Function φ-flous, application a laiide
au diagnostic en pathologie thyroidienne. These de
Doctorat en Medicine, Univ. Marseille.
Sanz, J., Sesma-Sara, M., and Bustince, H. (2021). A fuzzy
association rule-based classifier for imbalanced clas-
sification problems. Information Sciences, 577:265–
279.
Sanz, J. A., Fern
´
andez, A., Bustince, H., and Herrera, F.
(2013). Ivturs: A linguistic fuzzy rule-based classifi-
cation system based on a new interval-valued fuzzy
reasoning method with tuning and rule selection.
IEEE Transactions on Fuzzy Systems, 21(3):399–411.
Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M.,
Koomey, J., Masanet, E., Horner, N., Azevedo, I., and
Lintner, W. (2016). United states data center energy
usage report.
Sowrirajan, R. (2022). A literature based study on cyber
security vulnerabilities. International Journal of In-
novative Technology and Research, 10:10138–10141.
Triguero, I., Gonz
´
alez, S., Moyano, J. M., Garc
´
ıa L
´
opez,
S., Alcal
´
a Fern
´
andez, J., Luengo Mart
´
ın, J.,
Fern
´
andez Hilario, A. L., Jes
´
us D
´
ıaz, M. J. d.,
S
´
anchez, L., Herrera Triguero, F., et al. (2017). Keel
3.0: an open source software for multi-stage analysis
in data mining. International Journal of Computa-
tional Intelligence Systems, 10:1238–1249.
Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.
Exploratory Data Analysis in Cloud Computing Environments for Server Consolidation via Fuzzy Classification Models
643