Li, G., Feng, C., Woldesenbet, A., King, B., Hadavi, H.,
Moku, V., Loken, K., & Kunkel, G. (2020). Deep
Learning based Optical Inspection with Centralized
Analysis for High Volume Smart Manufacturing.
Annual Conference of the PHM Society, 12(1), Articolo
1. https://doi.org/10.36001/phmconf.2020.v12i1.1282
Luo, Q., Fang, X., Liu, L., Yang, C., & Sun, Y. (2020).
Automated Visual Defect Detection for Flat Steel
Surface: A Survey. IEEE Transactions on
Instrumentation and Measurement, 69(3), 626–644.
https://doi.org/10.1109/TIM.2019.2963555
Meister, S., Wermes, M., Stüve, J., & Groves, R. M. (2021).
Cross-evaluation of a parallel operating SVM – CNN
classifier for reliable internal decision-making
processes in composite inspection. Journal of
Manufacturing Systems, 60, 620–639. https://doi.org/
10.1016/j.jmsy.2021.07.022
Mishra, D., Gunasekaran, A., Childe, S. J., Papadopoulos,
T., Dubey, R., & Wamba, S. (2016). Vision,
applications and future challenges of Internet of Things:
A bibliometric study of the recent literature. Industrial
Management & Data Systems, 116(7), 1331–1355.
https://doi.org/10.1108/IMDS-11-2015-0478
Mueller, J. P., & Massaron, L. (2021). Machine learning for
dummies (2nd edition). John Wiley & Sons, Inc.
Mujeeb, A., Dai, W., Erdt, M., & Sourin, A. (2019). One
class based feature learning approach for defect
detection using deep autoencoders. Advanced
Engineering Informatics, 42, 100933. https://doi.org/
10.1016/j.aei.2019.100933
Paneru, S., & Jeelani, I. (2021). Computer vision applica-
tions in construction: Current state, opportunities &
challenges. Automation in Construction, 132, 103940.
https://doi.org/10.1016/j.autcon.2021.103940
Piuri, V., Scotti, F., & Roveri, M. (2005). Computational
intelligence in industrial quality control. IEEE
International Workshop on Intelligent Signal
Processing, 2005., 4–9. https://doi.org/10.1109/WISP.
2005.1531623
Raveendran, S., & Chandrasekhar, A. (2022). Inspecting
and classifying physical failures in MEMS substrates
during fabrication using computer vision.
Microelectronic Engineering, 254, 111696.
https://doi.org/10.1016/j.mee.2021.111696
Robotyshyn, M., Sharkadi, M., & Malyar, M. (2021).
Surface Defect Detection Based on Deep Learning
Approach. 13.
Sandhya, N., Sashikumar, N. M., Priyanka, M., Wenisch, S.
M., & Kumarasamy, K. (2021). Automated Fabric
Defect Detection and Classification: A Deep Learning
Approach. Textile & Leather Review, 4, 315–335.
https://doi.org/10.31881/TLR.2021.24
Saqlain, M., Abbas, Q., & Lee, J. Y. (2020). A Deep
Convolutional Neural Network for Wafer Defect
Identification on an Imbalanced Dataset in
Semiconductor Manufacturing Processes. IEEE
Transactions on Semiconductor Manufacturing, 33(3),
436–444. https://doi.org/10.1109/TSM.2020.2994357
Schlosser, T., Beuth, F., Friedrich, M., & Kowerko, D.
(2019). A Novel Visual Fault Detection and
Classification System for Semiconductor
Manufacturing Using Stacked Hybrid Convolutional
Neural Networks. 2019 24th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), 1511–1514. https://doi.org/10.11
09/ETFA.2019.8869311
Schlosser, T., Friedrich, M., Beuth, F., & Kowerko, D.
(2022). Improving automated visual fault inspection for
semiconductor manufacturing using a hybrid multistage
system of deep neural networks. Journal of Intelligent
Manufacturing, 33(4), 1099–1123. https://doi.org/
10.1007/s10845-021-01906-9
Schwebig, A. I. M., & Tutsch, R. (2020). Intelligent fault
detection of electrical assemblies using hierarchical
convolutional networks for supporting automatic
optical inspection systems. Journal of Sensors and
Sensor Systems, 9(2), 363–374. https://doi.org/10.51
94/jsss-9-363-2020
Sivabalakrishnan, R., Kalaiarasan, A., Ajithvishva, M. S.,
Hemsri, M., Oorappan, G. M., & Yasodharan, R.
(2020). IoT visualization of Smart Factory for Additive
Manufacturing System (ISFAMS) with visual
inspection and material handling processes. IOP
Conference Series: Materials Science and Engineering,
995(1), 012027. https://doi.org/10.1088/1757-
899X/995/1/012027
Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020).
Segmentation-based deep-learning approach for
surface-defect detection. Journal of Intelligent
Manufacturing, 31. https://doi.org/10.1007/s10845-
019-01476-x
Tayeh, T., Aburakhia, S., Myers, R., & Shami, A. (2020).
Distance-Based Anomaly Detection for Industrial
Surfaces Using Triplet Networks. 2020 11th IEEE
Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), 0372–
0377. https://doi.org/10.1109/IEMCON51383.2020.9
284921
Thalagala, S., & Walgampaya, C. (2021). Application of
AlexNet convolutional neural network architecture-
based transfer learning for automated recognition of
casting surface defects. 2021 International Research
Conference on Smart Computing and Systems
Engineering (SCSE), 4, 129–136. https://doi.org/
10.1109/SCSE53661.2021.9568315
Voronin, V. V., Sizyakin, R., Zhdanova, M.,
Semenishchev, E. A., Bezuglov, D., & Zelemskii, A. A.
(2021). Automated visual inspection of fabric image
using deep learning approach for defect detection.
Automated Visual Inspection and Machine Vision IV,
11787. https://doi.org/10.1117/12.2592872
Voulodimos, A., Doulamis, N., Doulamis, A., &
Protopapadakis, E. (2018). Deep Learning for
Computer Vision: A Brief Review. Computational
Intelligence and Neuroscience, 2018, e7068349.
https://doi.org/10.1155/2018/7068349
Weiss, E. (2020). Electronic component solderability
assessment algorithm by deep external visual
inspection. 2020 IEEE Physical Assurance and