
ing of non-stationary data streams: a review and appli-
cation for smart grids flexibility improvement. Artifi-
cial Intelligence Review, 53:6111–6154.
He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atal-
lah, A., Herbrich, R., Bowers, S., et al. (2014). Practi-
cal lessons from predicting clicks on ads at facebook.
In Proceedings of the eighth international workshop
on data mining for online advertising, pages 1–9.
Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-
Smith, J., Sreekanti, V., Tumanov, A., and Wu, C.
(2018). Serverless computing: One step forward, two
steps back. arXiv preprint arXiv:1812.03651.
Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani,
V., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H.
(2016). Serverless computation with openlambda. In
8th {USENIX} workshop on hot topics in cloud com-
puting (HotCloud 16).
Hou, B., Yang, S., Kuipers, F. A., Jiao, L., and Fu, X.
(2023). Eavs: Edge-assisted adaptive video stream-
ing with fine-grained serverless pipelines. In INFO-
COM 2023-IEEE International Conference on Com-
puter Communications. IEEE.
Huyen, C. (2020). Machine learning is going real-time. Ac-
cessed: 2022-12-16.
Huyen, C. (2022). Real-time machine learning: Challenges
and solutions. Accessed: 2022-12-16.
Ishakian, V., Muthusamy, V., and Slominski, A. (2018).
Serving deep learning models in a serverless platform.
In 2018 IEEE International Conference on Cloud En-
gineering (IC2E), pages 257–262. IEEE.
Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic,
A., Singla, A., Wu, W., and Zhang, C. (2021). To-
wards demystifying serverless machine learning train-
ing. In Proceedings of the 2021 International Confer-
ence on Management of Data, pages 857–871.
Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., and Recht,
B. (2017). Occupy the cloud: Distributed computing
for the 99%. In Proceedings of the 2017 symposium
on cloud computing, pages 445–451.
Kaffes, K., Yadwadkar, N. J., and Kozyrakis, C. (2022).
Hermod: principled and practical scheduling for
serverless functions. In Proceedings of the 13th Sym-
posium on Cloud Computing, pages 289–305.
Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J.,
and Kozyrakis, C. (2018). Pocket: Elastic ephemeral
storage for serverless analytics. In OSDI, pages 427–
444.
Konstantoudakis, K., Breitgand, D., Doumanoglou, A.,
Zioulis, N., Weit, A., Christaki, K., Drakoulis, P.,
Christakis, E., Zarpalas, D., and Daras, P. (2022).
Serverless streaming for emerging media: towards 5g
network-driven cost optimization: A real-time adap-
tive streaming faas service for small-session-oriented
immersive media. Multimedia Tools and Applications,
pages 1–40.
Liu, Z., Zou, L., Zou, X., Wang, C., Zhang, B., Tang,
D., Zhu, B., Zhu, Y., Wu, P., Wang, K., et al.
(2022). Monolith: Real time recommendation system
with collisionless embedding table. arXiv preprint
arXiv:2209.07663.
McMahan, H., Holt, G., Sculley, D., Young, M., Ebner, D.,
Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin,
D., Chikkerur, S., Liu, D., Wattenberg, M., Hrafnkels-
son, A., Boulos, T., and Kubica, J. (2013). Ad click
prediction: a view from the trenches. pages 1222–
1230.
Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G.,
Sourty, R., Vaysse, R., Zouitine, A., Gomes, H. M.,
Read, J., Abdessalem, T., et al. (2021). River: ma-
chine learning for streaming data in python.
Montiel, J., Ngo, H.-A., Le-Nguyen, M.-H., and Bifet, A.
(2022). Online clustering: Algorithms, evaluation,
metrics, applications and benchmarking. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 4808–4809.
M
¨
uller, I., Marroqu
´
ın, R., and Alonso, G. (2020). Lambada:
Interactive data analytics on cold data using server-
less cloud infrastructure. In Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data, pages 115–130.
Ooi, B. C., Tan, K.-L., Wang, S., Wang, W., Cai, Q., Chen,
G., Gao, J., Luo, Z., Tung, A. K., Wang, Y., et al.
(2015). Singa: A distributed deep learning platform.
In Proceedings of the 23rd ACM international confer-
ence on Multimedia, pages 685–688.
P
´
alovics, R., Kelen, D., and Bencz
´
ur, A. A. (2017). Tu-
torial on open source online learning recommenders.
In Proceedings of the Eleventh ACM Conference on
Recommender Systems, pages 400–401.
Patel, D., Lin, S., and Kalagnanam, J. (2022). Dsserve -
data science using serverless. In 2022 IEEE Inter-
national Conference on Big Data (Big Data), pages
2343–2345.
Sahoo, D., Pham, Q., Lu, J., and Hoi, S. C. (2017a). Online
deep learning: Learning deep neural networks on the
fly. arXiv preprint arXiv:1711.03705.
Sahoo, D., Pham, Q., Lu, J., and Hoi, S. C. H. (2017b).
Online deep learning: Learning deep neural networks
on the fly. CoRR, abs/1711.03705.
Tsymbal, A. (2004). The problem of concept drift: defi-
nitions and related work. Computer Science Depart-
ment, Trinity College Dublin, 106(2):58.
vZliobait.e, I., Bifet, A., Gaber, M., Gabrys, B., Gama, J.,
Minku, L., and Musial, K. (2012). Next challenges
for adaptive learning systems. SIGKDD Explorations,
2:in press.
Wang, H., Niu, D., and Li, B. (2019). Distributed machine
learning with a serverless architecture. In IEEE IN-
FOCOM 2019-IEEE Conference on Computer Com-
munications, pages 1288–1296. IEEE.
Yu, M., Jiang, Z., Ng, H. C., Wang, W., Chen, R., and Li,
B. (2021). Gillis: Serving large neural networks in
serverless functions with automatic model partition-
ing. In 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), pages 138–
148. IEEE.
Zheng, T. and Wen, Z. (2022). Online convolutional neural
network for image streams classification. Proceedings
of the 5th International Conference on Big Data Tech-
nologies.
Creek: Leveraging Serverless for Online Machine Learning on Streaming Data
49