
REFERENCES
Alomary, A. and Woolard, J. (2015). How is technology
accepted by users? a review of technology acceptance
models and theories. IRES 17th International Confer-
ence.
Andrade, A. F. M. (2021). Uma Abordagem Baseada Em
Gamificac¸
˜
ao Para Estimativa De Esforc¸o Em Desen-
volvimento
´
Agil De Software. PhD thesis, Universi-
dade Federal de Campina Grande.
Bobadilla, J., Ortega, F., Hernando, A., and Guti
´
errez, A.
(2013). Recommender systems survey. Knowledge-
based systems, 46:109–132.
Bogert, J. (1985). In defense of the fog index. The Bul-
letin of the Association for Business Communication,
48(2):9–12.
Burke, R. (2007). Hybrid web recommender systems. The
adaptive web: methods and strategies of web person-
alization, pages 377–408.
Chaparro, O., Lu, J., Zampetti, F., Moreno, L., Di Penta, M.,
Marcus, A., Bavota, G., and Ng, V. (2017). Detecting
missing information in bug descriptions. Proceedings
of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Part F130154:396–407.
Choetkiertikul, M., Dam, H. K., Tran, T., Ghose, A., and
Grundy, J. (2018). Predicting Delivery Capability in
Iterative Software Development. IEEE Transactions
on Software Engineering, 44(6):551–573.
Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T., Ghose,
A., and Menzies, T. (2019). A Deep Learning Model
for Estimating Story Points. IEEE Transactions on
Software Engineering, 45(7):637–656.
Choudhury, P., Crowston, K., Dahlander, L., Minervini,
M. S., and Raghuram, S. (2020). GitLab: work where
you want, when you want. Journal of Organization
Design, 9(1).
Cohn, M. (2004). User stories applied: For agile software
development. Pearson Education.
Cohn, M. (2005). Agile Estimating and Planning. Pearson
Education.
Dantas, E., Costa, A. A. M., Vinicius, M., Perkusich, M. B.,
de Almeida, H. O., and Perkusich, A. (2019). An ef-
fort estimation support tool for agile software devel-
opment: An empirical evaluation. In SEKE, pages
82–116.
Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989).
User acceptance of computer technology: A compar-
ison of two theoretical models. Management science,
35(8):982–1003.
Dimitrijevi
´
c, S., Jovanovi
´
c, J., and Deved
ˇ
zi
´
c, V. (2015).
A comparative study of software tools for user story
management. Information and Software Technology,
57:352–368.
Dragicevic, S., Celar, S., and Turic, M. (2017). Bayesian
network model for task effort estimation in agile soft-
ware development. Journal of Systems and Software,
127:109–119.
DuBay, W. H. (2004). The principles of readability: A brief
introduction to readability research. Impact Informa-
tion, (949):1–72.
Dyb
˚
a, T. and Dingsøyr, T. (2008). Empirical studies of agile
software development: A systematic review. Informa-
tion and Software Technology, 50(9-10):833–859.
Elallaoui, M., Nafil, K., and Touahni, R. (2018). Automatic
transformation of user stories into uml use case dia-
grams using nlp techniques. Procedia computer sci-
ence, 130:42–49.
F
´
avero, L. P. and Belfiore, P. (2017). Manual de an
´
alise
de dados: estat
´
ıstica e modelagem multivariada com
Excel®, SPSS® e Stata®. Elsevier Brasil.
Gavidia-Calderon, C., Sarro, F., Harman, M., and Barr, E. T.
(2021). The Assessor’s Dilemma: Improving Bug Re-
pair via Empirical Game Theory. IEEE Transactions
on Software Engineering, 47(10):2143–2161.
Gliem, J. A. and Gliem, R. R. (2003). Calculating, inter-
preting, and reporting cronbach’s alpha reliability co-
efficient for likert-type scales. Midwest Research-to-
Practice Conference in Adult, Continuing, and Com-
munity Education.
Gross, P. P. and Sadowski, K. (1985). FOGINDEX: A read-
ability formula program for microcomputers. Journal
of Reading, 28(7):614–618.
Hassenzahl, M., Burmester, M., and Koller, F.
(2003). Attrakdiff: Ein fragebogen zur messung
wahrgenommener hedonischer und pragmatischer
qualit
¨
at. Mensch & Computer 2003: Interaktion in
Bewegung, pages 187–196.
Huang, Y., Wang, J., Wang, S., Liu, Z., Wang, D., and
Wang, Q. (2021). Characterizing and predicting good
first issues. International Symposium on Empirical
Software Engineering and Measurement.
Jadhav, D., Kundale, J., Bhagwat, S., and Joshi, J. (2023).
A Systematic Review of the Tools and Techniques in
Distributed Agile Software Development. Agile Soft-
ware Development: Trends, Challenges and Applica-
tions, pages 161–186.
Jim
´
enez, S., Alanis, A., Beltr
´
an, C., Ju
´
arez-Ram
´
ırez, R.,
Ram
´
ırez-Noriega, A., and Tona, C. (2023). Usqa:
A user story quality analyzer prototype for support-
ing software engineering students. Computer Appli-
cations in Engineering Education.
Koenke, K. (1971). Another practical note on readability
formulas. Journal of Reading, 15(3):203–208.
Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., and
Brinkkemper, S. (2016). Improving agile require-
ments: the quality user story framework and tool. Re-
quirements engineering, 21:383–403.
Mani, S., Sankaran, A., and Aralikatte, R. (2019). Deep-
triage: Exploring the effectiveness of deep learning
for bug triaging. ACM International Conference Pro-
ceeding Series, pages 171–179.
Mergel, I. (2016). Agile innovation management in govern-
ment: A research agenda. Government Information
Quarterly, 33(3):516–523.
Odilinye, L. and Popowich, F. (2020). Personalized rec-
ommender system using learners’ metacognitive read-
ing activities. In Methodologies and Intelligent Sys-
tems for Technology Enhanced Learning, 10th Inter-
national Conference, pages 195–205. Springer.
OpenAI (2023). GPT-4 Technical Report. 4:1–100.
User Story Tutor (UST) to Support Agile Software Developers
61