
REFERENCES
Antoniou, G. and Van Harmelen, F. (2004). A semantic web
primer. MIT press.
Bader, S. and Hitzler, P. (2005). Dimensions of Neural-
symbolic Integration - A Structured Survey.
Baron-Cohen, S., Leslie, A. M., and Frith, U. (1985). Does
the autistic child have a “theory of mind” ? Cognition,
21(1):37–46.
Bartling, B., Fehr, E., Huffman, D., and Netzer, N. (2018).
The Causal Effect of Trust.
Buehler, M. C. and Weisswange, T. H. (2020). Theory of
Mind based Communication for Human Agent Coop-
eration. In 2020 IEEE International Conference on
Human-Machine Systems (ICHMS), pages 1–6.
Byom, L. and Mutlu, B. (2013). Theory of mind: mecha-
nisms, methods, and new directions. Frontiers in Hu-
man Neuroscience, 7.
Carloni, G., Berti, A., and Colantonio, S. (2023). The
role of causality in explainable artificial intelligence.
arXiv:2309.09901 [cs].
Chan, S. and Siegel, E. L. (2019). Will machine learn-
ing end the viability of radiology as a thriving med-
ical specialty? The British Journal of Radiology,
92(1094):20180416.
Deng, L. and Yu, D. (2014). Deep Learning: Methods
and Applications. Foundations and Trends® in Signal
Processing, 7(3–4):197–387. Publisher: Now Pub-
lishers, Inc.
Eberhardt, F. (2017). Introduction to the foundations of
causal discovery. International Journal of Data Sci-
ence and Analytics, 3(2):81–91.
Emelin, D., Bras, R. L., Hwang, J. D., Forbes, M., and
Choi, Y. (2020). Moral Stories: Situated Reason-
ing about Norms, Intents, Actions, and their Conse-
quences. arXiv:2012.15738 [cs]. arXiv: 2012.15738.
Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.,
and Patel-Schneider, P. (2001). OIL: an ontology in-
frastructure for the Semantic Web. IEEE Intelligent
Systems, 16(2):38–45. Conference Name: IEEE Intel-
ligent Systems.
Frith, C. and Frith, U. (2005). Theory of mind. Current
Biology, 15(17):R644–R645. Publisher: Elsevier.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., and
Booch, G. (1994). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley
Professional, Reading, Mass, 1st edition edition.
Ganguly, N., Fazlija, D., Badar, M., Fisichella, M., Sikdar,
S., Schrader, J., Wallat, J., Rudra, K., Koubarakis, M.,
Patro, G. K., Amri, W. Z. E., and Nejdl, W. (2023). A
Review of the Role of Causality in Developing Trust-
worthy AI Systems. arXiv:2302.06975 [cs].
Garcez, A. d., Broda, K. B., and Gabbay, D. M. (2002a).
Neural-Symbolic Integration: The Road Ahead. In
Garcez, A. d., Broda, K. B., and Gabbay, D. M.,
editors, Neural-Symbolic Learning Systems: Founda-
tions and Applications, Perspectives in Neural Com-
puting, pages 235–252. Springer, London.
Garcez, A. d., Lamb, L., and Gabbay, D. (2009). Neural-
Symbolic Cognitive Reasoning. Springer, Berlin, Hei-
delberg.
Garcez, A. d. and Lamb, L. C. (2023). Neurosymbolic
AI: the 3rd wave. Artificial Intelligence Review,
56(11):12387–12406.
Garcez, A. S. d., Gabbay, D. M., and Broda, K. B. (2002b).
Neural-Symbolic Learning System: Foundations and
Applications. Springer-Verlag, Berlin, Heidelberg.
G
¨
ardenfors, P. (2019). From Sensations to Concepts: a Pro-
posal for Two Learning Processes. Review of Philos-
ophy and Psychology, 10(3):441–464.
Greifeneder, B. (2021). Three Ways A Causal Approach
Can Improve Trust In AI. Section: Innovation.
Harbers, M., Verbrugge, R., Sierra, C., and Debenham, J.
(2008). The Examination of an Information-Based
Approach to Trust. In Sichman, J. S., Padget, J., Os-
sowski, S., and Noriega, P., editors, Coordination, Or-
ganizations, Institutions, and Norms in Agent Systems
III, Lecture Notes in Computer Science, pages 71–82,
Berlin, Heidelberg. Springer.
Harnad, S. (1990). The symbol grounding problem. Physica
D: Nonlinear Phenomena, 42(1):335–346.
Haynes, C., Luck, M., McBurney, P., Mahmoud, S., V
´
ıtek,
T., and Miles, S. (2017). Engineering the emergence
of norms: a review. The Knowledge Engineering Re-
view, 32. Publisher: Cambridge University Press.
Ismael, J. (2023). Reflections on the asymmetry of cau-
sation. Interface Focus, 13(3):20220081. Publisher:
Royal Society.
Janssen, S., Sharpanskykh, A., and Mohammadi Ziabari,
S. S. (2022). Using Causal Discovery to Design
Agent-Based Models. In Van Dam, K. H. and Ver-
staevel, N., editors, Multi-Agent-Based Simulation
XXII, Lecture Notes in Computer Science, pages 15–
28, Cham. Springer International Publishing.
Jiang, L., Hwang, J. D., Bhagavatula, C., Bras, R. L.,
Forbes, M., Borchardt, J., Liang, J., Etzioni, O., Sap,
M., and Choi, Y. (2021). Delphi: Towards Machine
Ethics and Norms. arXiv:2110.07574 [cs]. arXiv:
2110.07574.
Kahneman, D. (2011). Thinking, Fast and Slow. Farrar,
Straus and Giroux, New York, 1st edition edition.
Kutach, D. (2013). Causal Asymmetry. In Kutach, D., ed-
itor, Causation and its Basis in Fundamental Physics,
page 0. Oxford University Press.
Kyono, T. and van der Schaar, M. (2019). Improv-
ing Model Robustness Using Causal Knowledge.
arXiv:1911.12441 [cs, stat].
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Ger-
shman, S. J. (2017). Building machines that learn
and think like people. Behavioral and Brain Sciences,
40:e253. Publisher: Cambridge University Press.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444. Number: 7553 Pub-
lisher: Nature Publishing Group.
L
´
evi-Strauss, C. (1962). La pens
´
ee sauvage. Plon. Google-
Books-ID: OoEeAAAAIAAJ.
Marcus, G. (2022). Deep Learning Is Hitting a Wall.
AI Engineering for Trust by Design
363