
REFERENCES
Alatise, M. B. and Hancke, G. P. (2020). A review on chal-
lenges of autonomous mobile robot and sensor fusion
methods. IEEE Access, 8:39830–39846.
Atik, M. E., Ozturk, O., Duran, Z., and Seker, D. Z. (2020).
An automatic image matching algorithm based on thin
plate splines. Earth Science Informatics, 13:869–882.
Ben-Ari, M., Mondada, F., Ben-Ari, M., and Mondada, F.
(2018). Robotic motion and odometry. Elements of
Robotics, pages 63–93.
Carlevaris-Bianco, N., Ushani, A. K., and Eustice, R. M.
(2016). University of michigan north campus long-
term vision and lidar dataset. The International Jour-
nal of Robotics Research, 35(9):1023–1035.
Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Mat-
teucci, M., Migliore, D., Rizzi, D., Sorrenti, D. G.,
and Taddei, P. (2009). Rawseeds ground truth collec-
tion systems for indoor self-localization and mapping.
Autonomous Robots, 27:353–371.
Chen, C., Zhao, P., Lu, C. X., Wang, W., Markham, A.,
and Trigoni, N. (2018). Oxiod: The dataset for deep
inertial odometry. arXiv preprint arXiv:1809.07491.
Cort
´
es, S., Solin, A., Rahtu, E., and Kannala, J. (2018). Ad-
vio: An authentic dataset for visual-inertial odometry.
In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 419–434.
Donato, G. and Belongie, S. (2002). Approximate thin plate
spline mappings. In Computer Vision—ECCV 2002:
7th European Conference on Computer Vision Copen-
hagen, Denmark, May 28–31, 2002 Proceedings, Part
III 7, pages 21–31. Springer.
Duchon, J. (1977). Splines minimizing rotation-invariant
semi-norms in sobolev spaces. In Constructive The-
ory of Functions of Several Variables: Proceedings of
a Conference Held at Oberwolfach April 25–May 1,
1976, pages 85–100. Springer.
Garrido-Jurado, S., Mu
˜
noz-Salinas, R., Madrid-Cuevas,
F. J., and Mar
´
ın-Jim
´
enez, M. J. (2014). Auto-
matic generation and detection of highly reliable fidu-
cial markers under occlusion. Pattern Recognition,
47(6):2280–2292.
Gurturk, M., Yusefi, A., Aslan, M. F., Soycan, M., Durdu,
A., and Masiero, A. (2021). The ytu dataset and re-
current neural network based visual-inertial odometry.
Measurement, 184:109878.
HOBBYWING (2023). Esc1060. Available
in: https://www.hobbywing.com/en/products/
quicrun-wp-1060-brushed55.html. Accessed on
November 23, 2023.
Ishikawa, S. (1991). A method of indoor mobile robot
navigation by using fuzzy control. In Proceedings
IROS’91: IEEE/RSJ International Workshop on In-
telligent Robots and Systems’ 91, pages 1013–1018.
IEEE.
Khan, M. U., Zaidi, S. A. A., Ishtiaq, A., Bukhari, S. U. R.,
Samer, S., and Farman, A. (2021). A comparative
survey of lidar-slam and lidar based sensor technolo-
gies. In 2021 Mohammad Ali Jinnah University Inter-
national Conference on Computing (MAJICC), pages
1–8. IEEE.
Kirsanov, P., Gaskarov, A., Konokhov, F., Sofiiuk, K.,
Vorontsova, A., Slinko, I., Zhukov, D., Bykov, S.,
Barinova, O., and Konushin, A. (2019). Discoman:
Dataset of indoor scenes for odometry, mapping and
navigation. In 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
2470–2477. IEEE.
Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5):1147–
1163.
Niloy, M. A. K., Shama, A., Chakrabortty, R. K., Ryan,
M. J., Badal, F. R., Tasneem, Z., Ahamed, M. H.,
Moyeen, S. I., Das, S. K., Ali, M. F., Islam, M. R.,
and Saha, D. K. (2021). Critical design and control
issues of indoor autonomous mobile robots: A review.
IEEE Access, 9:35338–35370.
Nist
´
er, D., Naroditsky, O., and Bergen, J. (2004). Visual
odometry. In Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., volume 1, pages I–I.
Ieee.
NVIDIA (2023). Nvidia jetson nano. Avail-
able in: https://developer.nvidia.com/embedded/learn/
get-started-jetson-nano-devkit. Accessed on Novem-
ber 23, 2023.
Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., and
Schmid, M. (2019). A review of spline function pro-
cedures in r. BMC medical research methodology,
19(1):1–16.
Peynot, T., Scheding, S., and Terho, S. (2010). The maru-
lan data sets: Multi-sensor perception in a natural en-
vironment with challenging conditions. The Inter-
national Journal of Robotics Research, 29(13):1602–
1607.
Ramezani, M., Wang, Y., Camurri, M., Wisth, D., Mat-
tamala, M., and Fallon, M. (2020). The newer col-
lege dataset: Handheld lidar, inertial and vision with
ground truth. In 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
4353–4360. IEEE.
Raspberrypi (2023). Raspberry pi 4 model b. Avail-
able in: https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/. Accessed on November 23,
2023.
RoboCore (2023). Robocore. Available in: https://www.
robocore.net/roda-robocore/kit-raptor. Accessed on
November 23, 2023.
Rubio, F., Valero, F., and Llopis-Albert, C. (2019).
A review of mobile robots: Concepts, meth-
ods, theoretical framework, and applications. In-
ternational Journal of Advanced Robotic Systems,
16(2):1729881419839596.
Sokolov, S., Izmozherov, I., Blykhman, F., and Kutepov, S.
(2017). Thin plate splines method for 3d reconstruc-
tion of the left ventricle with use a limited number of
ultrasonic sections. DEStech Transactions on Engi-
neering and Technology Research, pages 258–262.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
126