
Krasanakis, E., Schinas, E., Papadopoulos, S., Kompat-
siaris, Y., and Mitkas, P. A. (2018). Venuerank: Iden-
tifying venues that contribute to artist popularity. In
ISMIR, pages 702–708.
Leslie, I. (2014). Why the mona lisa stands out. Intelligent
Life.
Liu, B. (2012). Sentiment analysis: A fascinating problem.
In Sentiment Analysis and Opinion Mining, pages 1–8.
Springer.
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,
J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.,
and Lee, S.-I. (2020). From local explanations to
global understanding with explainable ai for trees. Na-
ture Machine Intelligence, 2(1):2522–5839.
Lundberg, S. M. and Lee, S.-I. (2017). A unified ap-
proach to interpreting model predictions. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc.
Maleki, F., Ovens, K., Najafian, K., Forghani, B., Reinhold,
C., and Forghani, R. (2020). Overview of machine
learning part 1: fundamentals and classic approaches.
Neuroimaging Clinics, 30(4):e17–e32.
McCarthy, P. M. and Jarvis, S. (2010). Mtld, vocd-d, and
hd-d: A validation study of sophisticated approaches
to lexical diversity assessment. Behavior research
methods, 42(2):381–392.
McKinney, W. (2012). Python for data analysis: Data
wrangling with Pandas, NumPy, and IPython. ”
O’Reilly Media, Inc.”.
Meurers, D. (2012). Natural language processing and lan-
guage learning. Encyclopedia of applied linguistics,
pages 4193–4205.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. Advances in
neural information processing systems, 26.
Mitali, B. and Ingram, P. L. (2018). Fame as an illusion
of creativity: Evidence from the pioneers of abstract
art. HEC Paris Research Paper No. SPE-2018-1305,
Columbia Business School Research Paper, (18-74).
Nadeau, D. and Sekine, S. (2007). A survey of named entity
recognition and classification. Lingvisticae Investiga-
tiones, 30(1):3–26.
Navigli, R. and Ponzetto, S. P. (2012). Babelnet: The au-
tomatic construction, evaluation and application of a
wide-coverage multilingual semantic network. Artifi-
cial intelligence, 193:217–250.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.
Powell, L., Gelich, A., and Ras, Z. W. (2020). Applying
analytics to artist provided text to model prices of fine
art. Complex Pattern Mining: New Challenges, Meth-
ods and Applications, pages 189–211.
Ramakrishnan, J., Mavaluru, D., Srinivasan, K.,
Mubarakali, A., Narmatha, C., and Malathi, G.
(2020). Opinion mining using machine learning
approaches: a critical study. In 2020 international
conference on computing and information technology
(ICCIT-1441), pages 1–4. IEEE.
Sawicki, J., Ganzha, M., and Paprzycki, M. (2023). The
state of the art of natural language processing-a sys-
tematic automated review of nlp literature using nlp
techniques. Data Intelligence, pages 1–47.
Schedl, M., Pohle, T., Koenigstein, N., and Knees, P.
(2010). What’s hot? estimating country-specific artist
popularity. In ISMIR, pages 117–122.
Seguin, B., Striolo, C., diLenardo, I., and Kaplan, F. (2016).
Visual link retrieval in a database of paintings. In
Computer Vision–ECCV 2016 Workshops: Amster-
dam, The Netherlands, October 8-10 and 15-16, 2016,
Proceedings, Part I 14, pages 753–767. Springer.
Tekindor, A. A. and McCracken, V. (2012). Uniqueness in
art market: Specialization in visual art. In Agricul-
tural & Applied Economics Association’s 2012 AAEA
Annual Meeting: Seattle, August 12-14, 2012, Work-
ing Paper.
COMPLEXIS 2024 - 9th International Conference on Complexity, Future Information Systems and Risk
98