various deep learning model outputs to extract
geospatially relevant information.
ACKNOWLEDGEMENTS
We thank the Indian Institute of Technology
Kharagpur Ranbir and Chitra Gupta School of
Infrastructure Design and Management for financial
and infrastructure support. We thank Aereo
Manufacturing Private LTD. for providing us the
aerial dataset on the Indian context.
REFERENCES
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017).
Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions
on pattern analysis and machine intelligence, 39(12),
2481-2495.
Bayati, H., Najafi, A., Vahidi, J., & Gholamali Jalali, S.
(2021). 3D reconstruction of uneven-aged forest in
single tree scale using digital camera and SfM-MVS
technique. Scandinavian Journal of Forest Research,
36(2–3), 210–220. https://doi.org/10.1080/028275
81.2021.1903074
Bharath, H. A., Chandan, M. C., Vinay, S., &
Ramachandra, T. V. (2018). Modelling urban dynamics
in rapidly urbanising Indian cities. The Egyptian
Journal of Remote Sensing and Space Science, 21(3),
201-210.
Dey, M., Prakash, P. S., & Aithal, B. H. (2024). UnetEdge:
A transfer learning-based framework for road feature
segmentation from high-resolution remote sensing
images. Remote Sensing Applications: Society and
Environment, 101160.
Goldberg, H., Brown, M., & Wang, S. (2017). A benchmark
for building footprint classification using orthorectified
RGB imagery and digital surface models from
commercial satellites. In 2017 IEEE Applied Imagery
Pattern Recognition Workshop (AIPR) (pp. 1-7). IEEE.
He, F., Liu, T., & Tao, D. (2020). Why resnet works?
residuals generalize. IEEE transactions on neural
networks and learning systems, 31(12), 5349-5362.
Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O'Connor, J.,
& Rosette, J. (2019). Structure from motion
photogrammetry in forestry: A review. Current
Forestry Reports, 5(3), 155-168.
Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by
Ultralytics (Version 8.0.0) [Computer software].
https://github.com/ultralytics/ultralytics
Jocher, G., Nishimura, K., Mineeva, T., & Vilarino, R.
(2020). Yolov5 by ultralytics. Disponı vel em:
https://github. com/ultralytics/yolov5.
Khatua, A., Goswami, A. K., & Aithal, B. H. (2023). Deep
learning-based automatic building types classification
for transport planning. Research for Transport and
Logistics Industry (R4TLI), 8Th International
Conference, Sri Lanka Society of Transport and
Logistics.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017).
ImageNet classification with deep convolutional neural
networks. Communications of the ACM, 60(6), 84-90.
Lindeberg, T. (2012). Scale Invariant Feature Transform.
Scholarpedia, 7(5), 10491.
Ps, P., & Aithal, B. H. (2022). Building footprint extraction
from very high-resolution satellite images using deep
learning. Journal of Spatial Science, 1-17.
Ramachandra, T V &Aithal, Dr. Bharath & M V,
Sowmyashree. (2014). Urban structure in Kolkata:
metrics and modelling through geo-informatics.
Applied Geomatics. 6. 1-16. 10.1007/s12518-014-
0135-y.
Ramachandra, T. V., Aithal, B. H., & Sanna, D. D. (2012).
Insights to urban dynamics through landscape spatial
pattern analysis. International journal of applied earth
observation and geoinformation, 18, 329-343.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).
You only look once: Unified, real-time object detection.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 779-788).
Schonberger, J. L., & Frahm, J. M. (2016). Structure-from-
motion revisited. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 4104-4113).
Simonyan, K., & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., ... & Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 1-9).