De Myttenaere, A., Golden, B., Le Grand, B., and Rossi, F.
(2016). Mean absolute percentage error for regression
models. Neurocomputing, 192:38–48.
Engels, J. M. and Diehr, P. (2003). Imputation of missing
longitudinal data: a comparison of methods. Journal
of clinical epidemiology, 56(10):968–976.
Faust, L., Purta, R., Hachen, D., Striegel, A., Poellabauer,
C., Lizardo, O., and Chawla, N. V. (2017). Explor-
ing compliance: Observations from a large scale fitbit
study. In Proceedings of the 2nd International Work-
shop on Social Sensing, pages 55–60.
Feng, T. and Narayanan, S. (2019). Imputing missing
data in large-scale multivariate biomedical wearable
recordings using bidirectional recurrent neural net-
works with temporal activation regularization. In 2019
41st Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC),
pages 2529–2534. IEEE.
Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive
logistic regression: a statistical view of boosting (with
discussion and a rejoinder by the authors). The annals
of statistics, 28(2):337–407.
Ghandeharioun, A., Fedor, S., Sangermano, L., Ionescu, D.,
Alpert, J., Dale, C., Sontag, D., and Picard, R. (2017).
Objective assessment of depressive symptoms with
machine learning and wearable sensors data. In 2017
seventh international conference on affective comput-
ing and intelligent interaction (ACII), pages 325–332.
IEEE.
Grabczewski, K. and Jankowski, N. (2005). Feature selec-
tion with decision tree criterion. In Fifth International
Conference on Hybrid Intelligent Systems (HIS’05),
pages 6–pp. IEEE.
Gu, Q., Li, Z., and Han, J. (2012). Generalized fisher score
for feature selection. arXiv preprint arXiv:1202.3725.
Huo, Z., Ji, T., Liang, Y., Huang, S., Wang, Z., Qian, X.,
and Mortazavi, B. (2022). Dynimp: Dynamic impu-
tation for wearable sensing data through sensory and
temporal relatedness. In ICASSP 2022-2022 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 3988–3992. IEEE.
Hyndman, R. J. (2011). Moving averages.
Iqbal, S. M., Mahgoub, I., Du, E., Leavitt, M. A., and As-
ghar, W. (2021). Advances in healthcare wearable de-
vices. NPJ Flexible Electronics, 5(1):9.
Johnston, D. W. (1993). The current status of the coronary
prone behaviour pattern. Journal of the Royal Society
of Medicine, 86(7):406–409.
Kanokoda, T., Kushitani, Y., Shimada, M., and Shirakashi,
J.-i. (2019). Gesture prediction using wearable sens-
ing systems with neural networks for temporal data
analysis. Sensors, 19(3):710.
Kim, Y. and Kim, J. (2004). Gradient lasso for feature selec-
tion. In Proceedings of the twenty-first international
conference on Machine learning, page 60.
Längkvist, M., Karlsson, L., and Loutfi, A. (2014). A re-
view of unsupervised feature learning and deep learn-
ing for time-series modeling. Pattern recognition let-
ters, 42:11–24.
Lin, S., Wu, X., Martinez, G., and Chawla, N. V. (2020).
Filling missing values on wearable-sensory time se-
ries data. In Proceedings of the 2020 SIAM Inter-
national Conference on Data Mining, pages 46–54.
SIAM.
Lu, T.-C., Fu, C.-M., Ma, M. H.-M., Fang, C.-C.,
and Turner, A. M. (2016). Healthcare applica-
tions of smart watches. Applied clinical informatics,
7(03):850–869.
Mallol-Ragolta, A., Semertzidou, A., Pateraki, M., and
Schuller, B. (2021). harage: a novel multimodal
smartwatch-based dataset for human activity recogni-
tion. In 2021 16th IEEE International Conference on
Automatic Face and Gesture Recognition (FG 2021),
pages 01–07. IEEE.
Masci, J., Meier, U., Cire¸san, D., and Schmidhuber, J.
(2011). Stacked convolutional auto-encoders for hi-
erarchical feature extraction. In Artificial Neural Net-
works and Machine Learning–ICANN 2011: 21st In-
ternational Conference on Artificial Neural Networks,
Espoo, Finland, June 14-17, 2011, Proceedings, Part
I 21, pages 52–59. Springer.
Mattingly, S. M., Gregg, J. M., Audia, P., Bayraktaroglu,
A. E., Campbell, A. T., Chawla, N. V., Das Swain, V.,
De Choudhury, M., D’Mello, S. K., Dey, A. K., et al.
(2019). The tesserae project: Large-scale, longitudi-
nal, in situ, multimodal sensing of information work-
ers. In Extended Abstracts of the 2019 CHI Confer-
ence on Human Factors in Computing Systems, pages
1–8.
Medsker, L. R. and Jain, L. (2001). Recurrent neural net-
works. Design and Applications, 5(64-67):2.
Montgomery, D. C., Peck, E. A., and Vining, G. G. (2021).
Introduction to linear regression analysis. John Wiley
& Sons.
Nester, R. (2023). Wearable technology market size worth
usd 1.3 trillion by 2035, says research nester.
Noor, N. M., Al Bakri Abdullah, M. M., Yahaya, A. S., and
Ramli, N. A. (2015). Comparison of linear interpola-
tion method and mean method to replace the missing
values in environmental data set. In Materials Science
Forum, volume 803, pages 278–281. Trans Tech Publ.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia,
4(2):1883.
Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1:81–106.
Ranstam, J. and Cook, J. (2018). Lasso regression. Journal
of British Surgery, 105(10):1348–1348.
Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F.,
Srivastava, J., Elmagarmid, A., Arora, T., Taheri, S.,
et al. (2016). Sleep quality prediction from wearable
data using deep learning. JMIR mHealth and uHealth,
4(4):e6562.
Missing Data Imputation in Daily Wearable Data for Improved Classification Performance
71