Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. (2019).
Attention Based Spatial-Temporal Graph
Convolutional Networks for Traffic Flow Forecasting.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01), Article 01. https://doi.org/10.16
09/aaai.v33i01.3301922
Herzen, J., Lässig, F., Piazzetta, S. G., Neuer, T., Tafti, L.,
Raille, G., Van Pottelbergh, T., Pasieka, M., Skrodzki,
A., Huguenin, N., Dumonal, M., Kościsz, J., Bader, D.,
Gusset, F., Benheddi, M., Williamson, C., Kosinski,
M., Petrik, M., and Grosch, G. (2023). Darts: User-
friendly modern machine learning for time series. The
Journal of Machine Learning Research, 23(1),
124:5442-124:5447.
Huang, X., Ye, Y., Xiong, L., Lau, R. Y. K., Jiang, N., and
Wang, S. (2016). Time series k-means: A new k-means
type smooth subspace clustering for time series data.
Information Sciences, 367–368, 1–13. https://doi.org/
10.1016/j.ins.2016.05.040
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. Advances
in Neural Information Processing Systems, 30.
https://papers.nips.cc/paper_files/paper/2017/hash/644
9f44a102fde848669bdd9eb6b76fa-Abstract.html
Li, Y., Huang, J., and Chen, H. (2020). Time Series
Prediction of Wireless Network Traffic Flow Based on
Wavelet Analysis and BP Neural Network. Journal of
Physics: Conference Series, 1533(3), 032098.
https://doi.org/10.1088/1742-6596/1533/3/032098
Lin, S.-L., Huang, H.-Q., Zhu, D.-Q., and Wang, T.-Z.
(2009). The application of space-time ARIMA model
on traffic flow forecasting. 2009 International
Conference on Machine Learning and Cybernetics, 6,
3408–3412. https://doi.org/10.1109/ICMLC.2009.5212
785
Liu, J., and Guan, W. (2004). A Summary of Traffic Flow
Forecasting Methods. Journal of Highway and
Transportation Research and Development, 21(3),
Article 3.
Liu, Y., Liu, C., and Zheng, Z. (2020). Traffic Congestion
and Duration Prediction Model Based on Regression
Analysis and Survival Analysis. Open Journal of
Business and Management, 8(2), Article 2.
https://doi.org/10.4236/ojbm.2020.82059
Ma, X., Tao, Z., Wang, Y., Yu, H., and Wang, Y. (2015).
Long short-term memory neural network for traffic
speed prediction using remote microwave sensor data.
Transportation Research Part C: Emerging
Technologies, 54, 187–197. https://doi.org/10.1016/
j.trc.2015.03.014
Majumdar, S., Subhani, M. M., Roullier, B., Anjum, A., and
Zhu, R. (2021). Congestion prediction for smart
sustainable cities using IoT and machine learning
approaches. Sustainable Cities and Society, 64, 102500.
https://doi.org/10.1016/j.scs.2020.102500
Medina-Salgado, B., Sánchez-DelaCruz, E., Pozos-Parra,
P., and Sierra, J. E. (2022). Urban traffic flow
prediction techniques: A review. Sustainable
Computing: Informatics and Systems, 35, 100739.
https://doi.org/10.1016/j.suscom.2022.100739
ONU. (2019). World Population Prospects 2019:
Highlights. United Nations Department for Economic
and Social Affairs, New York (US).
Optuna: A hyperparameter optimization framework—
Optuna 3.5.0 documentation. (n.d.). Retrieved 12
December 2023, from https://optuna.readthedocs.io/en/
stable/index.html
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.
V., and Gulin, A. (2019). CatBoost: Unbiased boosting
with categorical features (arXiv:1706.09516). arXiv.
https://doi.org/10.48550/arXiv.1706.09516
Swarnamugi, M., and Chinnaiyan, R. (2018). IoT Hybrid
Computing Model for Intelligent Transportation
System (ITS). 2018 Second International Conference
on Computing Methodologies and Communication
(ICCMC), 802–806. https://doi.org/10.1109/ICCMC.2
018.8487843
Time Series Made Easy in Python—Darts documentation.
(n.d.). Retrieved 16 October 2023, from
https://unit8co.github.io/darts/
Vijayalakshmi, B., Ramar, K., Jhanjhi, Nz., Verma, S.,
Kaliappan, M., Vijayalakshmi, K., Vimal, S., Kavita,
and Ghosh, U. (2021). An attention-based deep learning
model for traffic flow prediction using spatiotemporal
features towards sustainable smart city. International
Journal of Communication Systems, 34(3), e4609.
https://doi.org/10.1002/dac.4609
Xu, T., Han, G., Qi, X., Du, J., Lin, C., and Shu, L. (2020).
A Hybrid Machine Learning Model for Demand
Prediction of Edge-Computing-Based Bike-Sharing
System Using Internet of Things. IEEE Internet of
Things Journal, 7(8), 7345–7356. https://doi.org/
10.1109/JIOT.2020.2983089
Zantalis, F., Koulouras, G., Karabetsos, S., and Kandris, D.
(2019). A Review of Machine Learning and IoT in
Smart Transportation. Future Internet, 11(4), 94.
https://doi.org/10.3390/fi11040094
Zhang, J., Zheng, Y., and Qi, D. (2017). Deep Spatio-
Temporal Residual Networks for Citywide Crowd
Flows Prediction (arXiv:1610.00081). arXiv.
https://doi.org/10.48550/arXiv.1610.00081
Zhang, Y., Cheng, Q., Liu, Y., and Liu, Z. (2023). Full-
scale spatio-temporal traffic flow estimation for city-
wide networks: A transfer learning based approach.
Transportmetrica B: Transport Dynamics, 11(1), 869–
895. https://doi.org/10.1080/21680566.2022.2143453
Zhou, J., Yang, Q., Zhang, X., Han, C., and Sun, L. (2020).
Traffic Prediction Method for GEO Satellites
Combining ARIMA Model and Grey Model. Journal of
Shanghai Jiaotong University (Science), 25(1), 65–69.
https://doi.org/10.1007/s12204-019-2152-9