Journal of Machine Learning Research, 23(1),
124:5442-124:5447.
Iria, J., and Soares, F. (2023). An energy-as-a-service
business model for aggregators of prosumers. Applied
Energy, 347, 121487. https://doi.org/10.1016/j.apen
ergy.2023.121487
Jung, J., Han, H., Kim, K., and Kim, H. S. (2021). Machine
Learning-Based Small Hydropower Potential
Prediction under Climate Change. Energies, 14(12),
Article 12. https://doi.org/10.3390/en14123643
Kerscher, S., and Arboleya, P. (2022). The key role of
aggregators in the energy transition under the latest
European regulatory framework. International Journal
of Electrical Power & Energy Systems, 134, 107361.
https://doi.org/10.1016/j.ijepes.2021.107361
Kezunovic, M., Pinson, P., Obradovic, Z., Grijalva, S.,
Hong, T., and Bessa, R. (2020). Big data analytics for
future electricity grids. Electric Power Systems
Research, 189, 106788. https://doi.org/10.1016/
j.epsr.2020.106788
Khajeh, H., Laaksonen, H., Gazafroudi, A. S., and Shafie-
khah, M. (2020). Towards Flexibility Trading at TSO-
DSO-Customer Levels: A Review. Energies, 13(1),
Article 1. https://doi.org/10.3390/en13010165
Kolbaşı, A., and Ünsal, A. (2021). A Comparison of the
Outlier Detecting Methods: An Application on Turkish
Foreign Trade Data. Journal of Mathematical Sciences,
5, 213–234.
Kostić, S., Stojković, M., and Prohaska, S. (2016).
Hydrological flow rate estimation using artificial neural
networks: Model development and potential
applications. Applied Mathematics and Computation,
291(C), 373–385.
Koutsandreas, D., Spiliotis, E., Petropoulos, F., and
Assimakopoulos, V. (2022). On the selection of
forecasting accuracy measures. Journal of the
Operational Research Society, 73(5), 937–954.
https://doi.org/10.1080/01605682.2021.1892464
Lin, K., Sheng, S., Zhou, Y., Liu, F., Li, Z., Chen, H., Xu,
C.-Y., Chen, J., and Guo, S. (2020). The exploration of
a Temporal Convolutional Network combined with
Encoder-Decoder framework for runoff forecasting.
Hydrology Research, 51(5), 1136–1149.
https://doi.org/10.2166/nh.2020.100
Lopes, M., Rocha, B., Vieira, A., Sá, J., Rolim, P., and
Silva, A. (2019). Artificial neural networks approaches
for predicting the potential for hydropower generation:
A case study for Amazon region. Journal of Intelligent
& Fuzzy Systems, 36, 5757–5772. https://doi.org/
10.3233/JIFS-181604
Marneris, I. G., Ntomaris, A. V., Biskas, P. N., Baslis, C.
G., Chatzigiannis, D. I., Demoulias, C. S., Oureilidis,
K. O., and Bakirtzis, A. G. (2023). Optimal
Participation of RES Aggregators in Energy and
Ancillary Services Markets. IEEE Transactions on
Industry Applications, 59(1), 232–243.
https://doi.org/10.1109/TIA.2022.3204863
Mite, M., and Barzola-Monteses, J. (2018). Statistical
Model for the Forecast of Hydropower Production in
Ecuador. International Journal of Renewable Energy
Research, 8.
Mosavi, A., Salimi, M., Faizollahzadeh Ardabili, S.,
Rabczuk, T., Shamshirband, S., and Varkonyi-Koczy,
A. R. (2019). State of the Art of Machine Learning
Models in Energy Systems, a Systematic Review.
Energies, 12(7), Article 7. https://doi.org/10.3390/
en12071301
N-BEATS — darts documentation. (n.d.). Retrieved 16
October 2023, from https://unit8co.github.io/darts/
generated_api/darts.models.forecasting.nbeats.html
Ngoc, T. T., Dai, L. V., and Phuc, D. T. (2021). Grid search
of multilayer perceptron based on the walk-forward
validation methodology. International Journal of
Electrical and Computer Engineering (IJECE), 11(2),
1742. https://doi.org/10.11591/ijece.v11i2.pp1742-
1751
Oliveira, P., Fernandes, B., Analide, C., and Novais, P.
(2021). Forecasting Energy Consumption of
Wastewater Treatment Plants with a Transfer Learning
Approach for Sustainable Cities. Electronics, 10(10),
Article 10. https://doi.org/10.3390/electronics10101149
Optuna: A hyperparameter optimization framework—
Optuna 3.5.0 documentation. (n.d.). Retrieved 12
December 2023, from https://optuna.readthedocs.io/en/
stable/index.html
Polprasert, J., Hanh Nguyên, V. A., and Nathanael
Charoensook, S. (2021). Forecasting Models for
Hydropower Production Using ARIMA Method. 2021
9th International Electrical Engineering Congress
(iEECON), 197–200. https://doi.org/10.1109/iEECON
51072.2021.9440293
Sari, M. A., Badruzzaman, M., Cherchi, C., Swindle, M.,
Ajami, N., and Jacangelo, J. G. (2018). Recent
innovations and trends in in-conduit hydropower
technologies and their applications in water distribution
systems. Journal of Environmental Management, 228,
416–428. https://doi.org/10.1016/j.jenvman.2018.08.078
Sharif, M. N., Haider, H., Farahat, A., Hewage, K., and
Sadiq, R. (2019). Water–energy nexus for water
distribution systems: A literature review.
Environmental Reviews, 27(4), 519–544.
https://doi.org/10.1139/er-2018-0106
Temporal Convolutional Network—Darts documentation.
(n.d.). Retrieved 16 October 2023, from
https://unit8co.github.io/darts/generated_api/darts.mod
els.forecasting.tcn_model.html
Weigel, P., and Fischedick, M. (2019). Review and
Categorization of Digital Applications in the Energy
Sector. Applied Sciences, 9(24), Article 24.
https://doi.org/10.3390/app9245350
Xu, Z., Lv, Z., Li, J., and Shi, A. (2022). A Novel Approach
for Predicting Water Demand with Complex Patterns
Based on Ensemble Learning. Water Resources
Management, 36(11), 4293–4312. https://doi.org/10.10
07/s11269-022-03255-5
Yi, S., Kondolf, G. M., Sandoval-Solis, S., and Dale, L.
(2022). Application of Machine Learning-based Energy
Use Forecasting for Inter-basin Water Transfer Project.