Gorman, R. (2021). A Virtual Community for
Disability Advocacy: Development of a Searchable
Artificial Intelligence-Supported Platform. JMIR
formative research, 5(11), e33335. https://doi.org/
10.2196/33335
Encinas Cantaro, J. J., & Montano Isabel, H. (2020). Design
of an autonomous electric vehicle for assistance in the
movement of people with visual disabilities using
vision algorithms and artificial intelligence. IOP
Conference Series: Materials Science and Engineering,
852(1). https://doi.org/10.1088/1757-899x/852/1/0120
81
Erbeli, F., He, K., Cheek, C., Rice, M., & Qian, X. (2023).
Exploring the Machine Learning Paradigm in
Determining Risk for Reading Disability. Sci Stud
Read, 27(1), 5-20. https://doi.org/10.1080/108884
38.2022.2115914
Fichten, C., Pickup, D., Asunsion, J., Jorgensen, M., Vo, C.,
Legault, A., & Libman, E. (2022). State of the Research
on Artificial Intelligence Based Apps for Post-
Secondary Students with Disabilities. Exceptionality
Education International, 31(1), 62-76.
https://doi.org/10.5206/eei.v31i1.14089
Flauzino, T., Simao, A. N. C., de Carvalho Jennings
Pereira, W. L., Alfieri, D. F., Oliveira, S. R., Kallaur,
A. P., Lozovoy, M. A. B., Kaimen-Maciel, D. R., Maes,
M., & Reiche, E. M. V. (2019). Disability in multiple
sclerosis is associated with age and inflammatory,
metabolic and oxidative/nitrosative stress biomarkers:
results of multivariate and machine learning
procedures. Metab Brain Dis, 34(5), 1401-1413.
https://doi.org/10.1007/s11011-019-00456-7
Fuh-Ngwa, V., Zhou, Y., Melton, P. E., van der Mei, I.,
Charlesworth, J. C., Lin, X., Zarghami, A., Broadley, S.
A., Ponsonby, A. L., Simpson-Yap, S., Lechner-Scott,
J., & Taylor, B. V. (2022). Ensemble machine learning
identifies genetic loci associated with future worsening
of disability in people with multiple sclerosis. Sci Rep,
12(1), 19291. https://doi.org/10.1038/s41598-022-
23685-w
Ghafghazi, S., Carnett, A., Neely, L., Das, A., & Rad, P.
(2021). AI-Augmented Behavior Analysis for Children
With Developmental Disabilities: Building Toward
Precision Treatment. IEEE Systems, Man, and
Cybernetics Magazine, 7(4), 4-12. https://doi.org/
10.1109/msmc.2021.3086989
Ghazal, M., Yaghi, M., Gad, A., El Bary, G., Alhalabi, M.,
Alkhedher, M., & El-Baz, A. S. (2021). AI-Powered
Service Robotics for Independent Shopping
Experiences by Elderly and Disabled People. Applied
Sciences, 11(19), 9007. https://doi.org/10.3390/app11
199007
Gorman, R., Maret, P., Creighton, A., Kundi, B.,
Muhlenbach, F., Buettgen, A., Dua, E., Reaume, G.,
Mgwigwi, T., Dinca-Panaitescu, S., & El Morr, C.
(2021). The Potential of an Artificial Intelligence for
Disability Advocacy: The WikiDisability Project.
Studies in health technology and informatics, 281,
1025-1026. https://doi.org/10.3233/SHTI210338
Herbuela, V., Karita, T., Furukawa, Y., Wada, Y., Toya, A.,
Senba, S., Onishi, E., & Saeki, T. (2022). Machine
learning-based classification of the movements of
children with profound or severe intellectual or multiple
disabilities using environment data features. PLoS One,
17(6), e0269472. https://doi.org/10.1371/journal.po
ne.0269472
Hori, K., Usuba, K., Sakuyama, A., Adachi, Y., Hirakawa,
K., Nakayama, A., Nagayama, M., Shimokawa, T.,
Takanashi, S., & Isobe, M. (2021). Hospitalization-
Associated Disability After Cardiac Surgery in Elderly
Patients - Exploring the Risk Factors Using Machine
Learning Algorithms. Circulation reports, 3(8), 423-
430. https://doi.org/10.1253/circrep.CR-21-0057
Islam, B., Ashafuddula, N. I. M., & Mahmud, F. (2018). A
Machine Learning Approach to Detect Self-Care
Problems of Children with Physical and Motor
Disability. 21st International Conference of Computer
and Information Technology (ICCIT),
Koc, K., Ekmekcioğlu, Ö., & Gurgun, A. P. (2021).
Integrating feature engineering, genetic algorithm and
tree-based machine learning methods to predict the
post-accident disability status of construction workers.
AUTOMATION IN CONSTRUCTION, 131.
https://doi.org/10.1016/j.autcon.2021.103896
Law, M. T., Traboulsee, A. L., Li, D. K., Carruthers, R. L.,
Freedman, M. S., Kolind, S. H., & Tam, R. (2019).
Machine learning in secondary progressive multiple
sclerosis: an improved predictive model for short-term
disability progression. Mult Scler J Exp Transl Clin,
5(4), 2055217319885983. https://doi.org/10.1177/205
5217319885983
Modak, M., Warade, O., Saiprasad, G., & Shekhar, S.
(2020). Machine Learning based Learning Disability
Detection using LMS. 2020 IEEE 5th International
Conference on Computing Communication and
Automation (ICCCA),
Montolio, A., Cegonino, J., Garcia-Martin, E., & Perez Del
Palomar, A. (2022). Comparison of Machine Learning
Methods Using Spectralis OCT for Diagnosis and
Disability Progression Prognosis in Multiple Sclerosis.
Annals of biomedical engineering, 50(5), 507-528.
https://doi.org/10.1007/s10439-022-02930-3
Montolio, A., Martin-Gallego, A., Cegonino, J., Orduna, E.,
Vilades, E., Garcia-Martin, E., & Palomar, A. P. D.
(2021). Machine learning in diagnosis and disability
prediction of multiple sclerosis using optical coherence
tomography. Comput Biol Med, 133, 104416.
https://doi.org/10.1016/j.compbiomed.2021.104416
Mostafa, S., Song, I. H. J., Metwally, A. A., Strauli, N.,
Sewde, N., Friesenhahn, M., Usdin, M., & Jia, M.
(2021). Predicting upper limb disability progression in
primary progressive multiple sclerosis using machine
learning and statistical methods. 2021 IEEE
International Conference on Bioinformatics and
Biomedicine (BIBM),
Nikam, V., Ranade, S., Shaik Mohammad, N., & Kulkarni,
M. (2019). A pilot study on machine learning approach
to delineate metabolic signatures in intellectual