
Conference on Smart and Sustainable Technologies
(SpliTech), pages 1–5.
Eiter, T. and Mannila, H. (1994). Computing discrete
fr
´
echet distance. Technical Report CD-TR 94/64, In-
formation Systems Department, Technical University
of Vienna.
Fernandez, A., Garcia, S., Herrera, F., and Chawla, N. V.
(2018). Smote for learning from imbalanced data:
Progress and challenges, marking the 15-year an-
niversary. Journal of Artificial Intelligence Research,
61:863–905.
Ferster, C., Fischer, J., Manaugh, K., Nelson, T., and
Winters, M. (2020). Using openstreetmap to inven-
tory bicycle infrastructure: A comparison with open
data from cities. International Journal of Sustainable
Transportation, 14(1):64–73.
Graser, A., Straub, M., and Dragaschnig, M. (2015). Is
OSM Good Enough for Vehicle Routing? A Study
Comparing Street Networks in Vienna, pages 3–17.
Springer International Publishing, Cham.
Gyawali, S. and Qian, Y. (2019). Misbehavior detection us-
ing machine learning in vehicular communication net-
works. In ICC 2019 - 2019 IEEE International Con-
ference on Communications (ICC), pages 1–6.
Haklay, M. and Weber, P. (2008). Openstreetmap: User-
generated street maps. IEEE Pervasive Computing,
7(4):12–18.
Hochmair, H. H., Zielstra, D., and Neis, P. (2015). Assess-
ing the completeness of bicycle trail and lane features
in openstreetmap for the united states. Transactions in
GIS, 19(1):63–81.
Iwendi, C., Bashir, A. K., Peshkar, A., Sujatha, R., Chatter-
jee, J. M., Pasupuleti, S., Mishra, R., Pillai, S., and Jo,
O. (2020). Covid-19 patient health prediction using
boosted random forest algorithm. Frontiers in Public
Health, 8.
Khalid, S., Khalil, T., and Nasreen, S. (2014). A survey of
feature selection and feature extraction techniques in
machine learning. In 2014 Science and Information
Conference, pages 372–378.
Mekuria, M. C., Furth, P. G., and Nixon, H. (2012). Low-
stress bicycling and network connectivity. Technical
Report CA-MTI-12-1005, Mineta Transportation In-
stitute.
Millard-Ball, A., Hampshire, R. C., and Weinberger, R. R.
(2019). Map-matching poor-quality gps data in urban
environments: the pgmapmatch package. Transporta-
tion Planning and Technology, 42(6):539–553.
Murphy, J., Pao, Y., and Yuen, A. (2019). Map matching
when the map is wrong: Efficient on/off road vehicle
tracking and map learning. In Proceedings of the 12th
ACM SIGSPATIAL International Workshop on Com-
putational Transportation Science, IWCTS’19, New
York, NY, USA. Association for Computing Machin-
ery.
Nunes, P., Moura, A., Santos, J. P., and Completo, A.
(2021). A simulated annealing algorithm to solve the
multi-objective bike routing problem. In 2021 Inter-
national Symposium on Computer Science and Intel-
ligent Controls (ISCSIC), pages 39–45.
Qu, L., Zhou, Y., Li, J., Yu, Q., and Jiang, X. (2023). Hmm-
based map matching and spatiotemporal analysis for
matching errors with taxi trajectories. ISPRS Interna-
tional Journal of Geo-Information, 12(8):330.
Reggiani, G., van Oijen, T., Hamedmoghadam, H., Daa-
men, W., Vu, H. L., and Hoogendoorn, S. (2022). Un-
derstanding bikeability: a methodology to assess ur-
ban networks. Transportation, 49(3):897–925.
Sasaki, Y., Yu, J., and Ishikawa, Y. (2019). Road segment
interpolation for incomplete road data. In 2019 IEEE
International Conference on Big Data and Smart
Computing (BigComp), pages 1–8. IEEE.
Schweizer, J., Bernardi, S., and Rupi, F. (2016). Map-
matching algorithm applied to bicycle global position-
ing system traces in bologna. IET Intelligent Trans-
port Systems, 10(4):244–250.
Singh, A., Thakur, N., and Sharma, A. (2016). A review of
supervised machine learning algorithms. In 2016 3rd
International Conference on Computing for Sustain-
able Global Development (INDIACom), pages 1310–
1315.
Sultan, J., Ben-Haim, G., Haunert, J.-H., and Dalyot,
S. (2017). Extracting spatial patterns in bicycle
routes from crowdsourced data. Transactions in GIS,
21(6):1321–1340.
Takahashi, K., Yamamoto, K., Kuchiba, A., and Koyama,
T. (2022). Confidence interval for micro-averaged f1
and macro-averaged f1 scores. Applied Intelligence,
52(5):4961–4972.
Toohey, K. and Duckham, M. (2015). Trajectory similarity
measures. SIGSPATIAL Special, 7(1):43–50.
Trogh, J., Botteldooren, D., De Coensel, B., Martens, L.,
Joseph, W., and Plets, D. (2022). Map matching and
lane detection based on markovian behavior, gis, and
imu data. IEEE Transactions on Intelligent Trans-
portation Systems, 23(3):2056–2070.
Wasserman, D., Rixey, A., Zhou, X. E., Levitt, D., and Ben-
jamin, M. (2019). Evaluating openstreetmap’s per-
formance potential for level of traffic stress analysis.
Transportation Research Record, 2673(4):284–294.
Yang, C. and Gid
´
ofalvi, G. (2018). Fast map matching, an
algorithm integrating hidden markov model with pre-
computation. International Journal of Geographical
Information Science, 32(3):547–570.
Zimmermann, M., Mai, T., and Frejinger, E. (2017). Bike
route choice modeling using gps data without choice
sets of paths. Transportation Research Part C: Emerg-
ing Technologies, 75:183–196.
SMARTGREENS 2024 - 13th International Conference on Smart Cities and Green ICT Systems
28