
Popov, A., Gebhardt, P., Chen, K., and Oldja, R. (2023).
NVRadarNet: Real-Time Radar Obstacle and Free
Space Detection for Autonomous Driving. In 2023
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 6958–6964.
Powers, D. (2011). Evaluation: From precision, recall and
f-measure to roc, informedness, markedness & cor-
relation. Journal of Machine Learning Technologies,
2(1):37–63.
Robert Bosch GmbH (2023). Front-radar premium.
SAE International. (2021). J3016 - Taxonomy and Defini-
tions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles. Technical report.
Sayyah, K., Sarkissian, R., Patterson, P., Huang, B., Efimov,
O., Kim, D., Elliott, K., Yang, L., and Hammon, D.
(2022). Fully Integrated FMCW LiDAR Optical En-
gine on a Single Silicon Chip. Journal of Lightwave
Technology, 40(9):2763–2772.
Scheiner, N., Kraus, F., Appenrodt, N., Dickmann, J., and
Sick, B. (2021). Object detection for automotive radar
point clouds – a comparison. AI Perspectives, 3(1):6.
Sch
¨
onemann, V. (2019). Safety requirements and distribu-
tion of functions for automated valet parking.
Schumann, O., Hahn, M., Scheiner, N., Weishaupt, F.,
Tilly, J. F., Dickmann, J., and W
¨
ohler, C. (2021).
RadarScenes: A Real-World Radar Point Cloud Data
Set for Automotive Applications. In 2021 IEEE 24th
International Conference on Information Fusion (FU-
SION), pages 1–8.
Schumann, O., Lombacher, J., Hahn, M., W
¨
ohler, C., and
Dickmann, J. (2020). Scene Understanding With Au-
tomotive Radar. IEEE Transactions on Intelligent Ve-
hicles, 5(2):188–203.
Schuster, F., Keller, C. G., Rapp, M., Haueis, M., and Curio,
C. (2016). Landmark based radar SLAM using graph
optimization. In 2016 IEEE 19th International Con-
ference on Intelligent Transportation Systems (ITSC),
pages 2559–2564. ISSN: 2153-0017.
Sheeny, M., De Pellegrin, E., Mukherjee, S., Ahrabian,
A., Wang, S., and Wallace, A. (2021). RADIATE:
A Radar Dataset for Automotive Perception in Bad
Weather. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 1–7. ISSN:
2577-087X.
Steinbaeck, J., Steger, C., Holweg, G., and Druml, N.
(2017). Next generation radar sensors in automotive
sensor fusion systems. In 2017 Sensor Data Fusion:
Trends, Solutions, Applications (SDF), pages 1–6.
Sun, C., Zhang, R., Lu, Y., Cui, Y., Deng, Z., Cao, D.,
and Khajepour, A. (2023). Toward Ensuring Safety
for Autonomous Driving Perception: Standardization
Progress, Research Advances, and Perspectives. IEEE
Transactions on Intelligent Transportation Systems,
pages 1–19.
Tang, X., Zhang, Z., and Qin, Y. (2022). On-Road Object
Detection and Tracking Based on Radar and Vision
Fusion: A Review. IEEE Intelligent Transportation
Systems Magazine, 14(5):103–128.
Velasco-Hernandez, G., Yeong, D. J., Barry, J., and Walsh,
J. (2020). Autonomous Driving Architectures, Per-
ception and Data Fusion: A Review. In 2020 IEEE
16th International Conference on Intelligent Com-
puter Communication and Processing (ICCP), pages
315–321.
Waldschmidt, C., Hasch, J., and Menzel, W. (2021). Auto-
motive Radar — From First Efforts to Future Systems.
IEEE Journal of Microwaves, 1(1):135–148.
Wang, Y., Jiang, Z., Gao, X., Hwang, J.-N., Xing, G.,
and Liu, H. (2021). Rodnet: Radar object detec-
tion using cross-modal supervision. In Proceedings
of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pages 504–513.
Xiao, P., Shao, Z., Hao, S., Zhang, Z., Chai, X., Jiao, J., Li,
Z., Wu, J., Sun, K., Jiang, K., Wang, Y., and Yang, D.
(2021). PandaSet: Advanced Sensor Suite Dataset for
Autonomous Driving. In 2021 IEEE International In-
telligent Transportation Systems Conference (ITSC),
pages 3095–3101.
Xu, F., Wang, H., Hu, B., and Ren, M. (2020). Road Bound-
aries Detection based on Modified Occupancy Grid
Map Using Millimeter-wave Radar. Mobile Networks
and Applications, 25(4):1496–1503.
Yang, M., Wang, S., Bakita, J., Vu, T., Smith, F. D., Ander-
son, J. H., and Frahm, J.-M. (2019). Re-thinking cnn
frameworks for time-sensitive autonomous-driving
applications: Addressing an industrial challenge. In
2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 305–317.
IEEE.
Yeong, D. J., Velasco-Hernandez, G., Barry, J., and
Walsh, J. (2021). Sensor and Sensor Fusion Tech-
nology in Autonomous Vehicles: A Review. Sensors,
21(6):2140.
Yu, J. and Krolik, J. (2012). MIMO multipath clutter mit-
igation for GMTI automotive radar in urban environ-
ments. In IET International Conference on Radar Sys-
tems (Radar 2012), pages 1–5.
Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K.
(2020). A Survey of Autonomous Driving: Common
Practices and Emerging Technologies. IEEE Access,
8:58443–58469.
Zang, S., Ding, M., Smith, D., Tyler, P., Rakotoarivelo, T.,
and Kaafar, M. A. (2019). The Impact of Adverse
Weather Conditions on Autonomous Vehicles: How
Rain, Snow, Fog, and Hail Affect the Performance of
a Self-Driving Car. IEEE Vehicular Technology Mag-
azine, 14(2):103–111.
Zhang, A., Nowruzi, F. E., and Laganiere, R. (2021). RAD-
Det: Range-Azimuth-Doppler based Radar Object
Detection for Dynamic Road Users. In 2021 18th
Conference on Robots and Vision (CRV), pages 95–
102.
Zhou, T., Yang, M., Jiang, K., Wong, H., and Yang, D.
(2020). MMW Radar-Based Technologies in Au-
tonomous Driving: A Review. Sensors, 20(24):7283.
Zhou, Y., Dong, Y., Hou, F., and Wu, J. (2022). Review on
Millimeter-Wave Radar and Camera Fusion Technol-
ogy. Sustainability, 14(9):5114.
VEHITS 2024 - 10th International Conference on Vehicle Technology and Intelligent Transport Systems
310