20th International Conference on Software Engineer-
ing, pages 188–197.
G
˘
aceanu, R. D., Szederjesi-Dragomir, A., Pop, H. F., and
S
ˆ
arbu, C. (2022). Abarc: An agent-based rough sets
clustering algorithm. Intelligent Systems with Appli-
cations, 16:200117.
JTeC (n.d.). Jtec: A large collection of java test classes for
test code analysis and processing. https://github.com/
MSR19-JTeC/JTeC. Accessed: 2023-05-23.
Juristo, N. and Moreno, A. (2004). Reviewing 25 years
of testing technique experiments. Empirical Software
Engineering, 9(7-44).
Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4j: A
database of existing faults to enable controlled test-
ing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, page 437–440, New York,
NY, USA. Association for Computing Machinery.
Kandil, P., Moussa, S., and Badr, N. (2017). Cluster-based
test cases prioritization and selection technique for ag-
ile regression testing. Journal of Software: Evolution
and Process, 29(6):e1794. e1794 JSME-15-0111.R1.
Khalid, Z. and Qamar, U. (2019). Weight and cluster based
test case prioritization technique. 2019 IEEE 10th An-
nual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pages 1013–
1022.
Medhat, N., Moussa, S. M., Badr, N. L., and Tolba,
M. F. (2020). A framework for continuous regression
and integration testing in iot systems based on deep
learning and search-based techniques. IEEE Access,
8:215716–215726.
Pan, R., Ghaleb, T. A., and Briand, L. (2022). Atm:
Black-box test case minimization based on test code
similarity and evolutionary search. arXiv preprint
arXiv:2210.16269.
Pan R., Bagherzadeh M., G. T. e. a. (2022). Test case selec-
tion and prioritization using machine learning: a sys-
tematic literature review. Empir Software Eng, 29:1 –
43.
Paterson, D., Campos, J., Abreu, R., Kapfhammer, G. M.,
Fraser, G., and McMinn, P. (2019). An empirical
study on the use of defect prediction for test case
prioritization. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST),
pages 346–357.
Poppendieck, M. and Poppendieck, T. (2003). Lean Soft-
ware Development: An Agile Toolkit. Addison-Wesley
Professional.
Pradeepa, R. and VimalDevi, K. (2013). Effectiveness
of test case prioritization using apfd metric: Survey.
In International Conference on Research Trends in
Computer Technologies (ICRTCT—2013). Proceed-
ings published in International Journal of Computer
Applications®(IJCA), pages 0975–8887.
Qu, X., Cohen, M., and Woolf, K. (2007). Combinatorial in-
teraction regression testing: A study of test case gen-
eration and prioritization. In 2007 IEEE International
Conference on Software Maintenance, Los Alamitos,
CA, USA. IEEE Computer Society.
Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J.
(1999). Test case prioritization: An empirical study. In
Proceedings IEEE International Conference on Soft-
ware Maintenance-1999 (ICSM’99).’Software Main-
tenance for Business Change’(Cat. No. 99CB36360),
pages 179–188. IEEE.
Salehie, M., Li, S., Tahvildari, L., Dara, R., Li, S., and
Moore, M. (2011). Prioritizing requirements-based
regression test cases: A goal-driven practice. In 2011
15th European Conference on Software Maintenance
and Reengineering, pages 329–332.
Schwaber, K. and Sutherland, J. (2017). The Scrum Guide.
Singh, A., Singhrova, A., Bhatia, R., and Rattan, D. (2023).
A Systematic Literature Review on Test Case Priori-
tization Techniques, chapter 7, pages 101–159. John
Wiley & Sons, Ltd.
SIR (n.d.). Software-artifact infrastructure repository. http:
//sir.unl.edu/. Accessed: 2023-05-23.
Spieker, H., Gotlieb, A., Marijan, D., and Mossige, M.
(2017). Reinforcement learning for automatic test
case prioritization and selection in continuous integra-
tion. In Proceedings of the 26th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analy-
sis, ISSTA 2017, page 12–22, New York, NY, USA.
Association for Computing Machinery.
Srikanth, H., Hettiarachchi, C., and Do, H. (2016). Require-
ments based test prioritization using risk factors: An
industrial study. Information and Software Technol-
ogy, 69:71 – 83.
Tiutin, C.-M. and Vescan, A. (2022). Test case prioritiza-
tion based on neural networks classification. In Pro-
ceedings of the 2nd ACM International Workshop on
AI and Software Testing/Analysis, AISTA 2022, page
9–16, New York, NY, USA. Association for Comput-
ing Machinery.
Vescan, A., Chisalita-Cretu, C., Serban, C., and Diosan,
L. (2021). On the use of evolutionary algorithms for
test case prioritization in regression testing consider-
ing requirements dependencies. In Proceedings of the
1st ACM International Workshop on AI and Software
Testing/Analysis, AISTA 2021, page 1–8, New York,
NY, USA. Association for Computing Machinery.
Vescan, A., G
˘
aceanu, R., and Szederjesi-Dragomir, A.
(2023b). Neural network-based test case prioritization
in continuous integration. In 2023 38th IEEE/ACM
International Conference on Automated Software En-
gineering Workshops (ASEW), pages 68–77. IEEE.
Vescan, A., Gaceanu, R., and Szederjesi-Dragomir, A. (ac-
cessed November 2023a). Embracing unification:a
comprehensive approach to modern tcp.
Yoo, S. and Harman, M. (2010). Using hybrid algorithm
for pareto efficient multi-objective test suite minimi-
sation. J. Syst. Softw., 83(4):689–701.
Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization
405