study in which the results and overall experience with
and without using the tool are compared.
ACKNOWLEDGMENT
This work was funded by the Ministry of Research,
Innovation, and Digitization, CNCS/CCCDI - UE-
FISCDI, project number PN-III-P1-1.1-TE2021-0892
within PNCDI III.
REFERENCES
Almaghairbe, R. and Roper, M. (2017). Separating pass-
ing and failing test executions by clustering anoma-
lies. Software Quality Journal, 25(3):803–840.
Ammann, P. and Offutt, J. (2016). Introduction to Software
Testing. Cambridge University Press, 2 edition.
ATAC (n.d.). Atac: a test coverage analysis tool. https:
//invisible-island.net/atac/atac.html. Accessed: 2023-
11-19.
Bertolino, A., Guerriero, A., Miranda, B., Pietrantuono, R.,
and Russo, S. (2020). Learning-to-rank vs ranking-
to-learn: Strategies for regression testing in contin-
uous integration. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing, ICSE ’20, page 1–12, New York, NY, USA. As-
sociation for Computing Machinery.
Cleanscape (n.d.). Suds software visualization and
test toolkit. https://stellar.cleanscape.net/products/
testwise/help/introduction.html. Accessed: 2023-11-
19.
Cobertura (n.d.). Cobertura: A code coverage utility for
java. https://cobertura.github.io/cobertura/. Accessed:
2023-11-19.
Dang, V. and Zarozinski, M. (2020). Ranklib. https:
//sourceforge.net/p/lemur/wiki/RankLib/. Accessed:
2023-11-19.
Elbaum, S., Rothermel, G., and Penix, J. (2014). Tech-
niques for improving regression testing in continuous
integration development environments. In Proceed-
ings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE
2014, page 235–245, New York, NY, USA. Associa-
tion for Computing Machinery.
Elixir (n.d.). Elixir programming language. https://
elixir-lang.org. Accessed: 2023-11-19.
EMMA (n.d.). Emma: a free java code coverage tool. http:
//emma.sourceforge.net/. Accessed: 2023-11-19.
EPD (n.d.). Erlang distribution protocol. https://www.
erlang.org/doc/apps/erts/erl
dist protocol.html. Ac-
cessed: 2023-11-19.
Erlang (n.d.). Erlang programming language. https://www.
erlang.org/. Accessed: 2023-11-19.
Graves, T. L., Harrold, M. J., Kim, J., Porters, A., and
Rothermel, G. (1998). An empirical study of regres-
sion test selection techniques. In Proceedings of the
20th International Conference on Software Engineer-
ing, pages 188–197.
Islam, M. M., Marchetto, A., Susi, A., Kessler, F. B., and
Scanniello, G. (2012). Motcp: A tool for the prior-
itization of test cases based on a sorting genetic al-
gorithm and latent semantic indexing. In 2012 28th
IEEE International Conference on Software Mainte-
nance (ICSM), pages 654–657.
JaCoCo (n.d.). Jacoco java code coverage library. https:
//www.eclemma.org/jacoco/. Accessed: 2023-11-19.
Kandil, P., Moussa, S., and Badr, N. (2017). Cluster-based
test cases prioritization and selection technique for ag-
ile regression testing. Journal of Software: Evolution
and Process, 29(6):e1794. e1794 JSME-15-0111.R1.
Khalid, Z. and Qamar, U. (2019). Weight and cluster based
test case prioritization technique. 2019 IEEE 10th An-
nual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pages 1013–
1022.
Lima, J. A. P. and Vergilio, S. R. (2022). A multi-armed
bandit approach for test case prioritization in continu-
ous integration environments. IEEE Transactions on
Software Engineering, 48(2):453–465.
Medhat, N., Moussa, S. M., Badr, N. L., and Tolba,
M. F. (2020). A framework for continuous regression
and integration testing in iot systems based on deep
learning and search-based techniques. IEEE Access,
8:215716–215726.
Mix (n.d.). Mix. https://hexdocs.pm/mix/Mix.html. Ac-
cessed: 2023-11-19.
muJava (n.d.). mujava: a mutation system for java pro-
grams. https://cs.gmu.edu/
∼
offutt/mujava/. Accessed:
2023-11-19.
MutGen (n.d.). Mutgen - motif based mutation simulation
library. https://github.com/fhcrc/mutgen. Accessed:
2023-11-19.
Omri, S. and Sinz, C. (2022). Learning to rank for test case
prioritization. In 2022 IEEE/ACM 15th International
Workshop on Search-Based Software Testing (SBST),
pages 16–24.
Pan, R., Ghaleb, T. A., and Briand, L. (2022). Atm:
Black-box test case minimization based on test code
similarity and evolutionary search. arXiv preprint
arXiv:2210.16269.
Pan R., Bagherzadeh M., G. T. e. a. (2022). Test case selec-
tion and prioritization using machine learning: a sys-
tematic literature review. Empir Software Eng, 29:1 –
43.
Pradeepa, R. and VimalDevi, K. (2013). Effectiveness
of test case prioritization using apfd metric: Survey.
In International Conference on Research Trends in
Computer Technologies (ICRTCT—2013). Proceed-
ings published in International Journal of Computer
Applications®(IJCA), pages 0975–8887.
Qu, X., Cohen, M., and Woolf, K. (2007). Combinatorial in-
teraction regression testing: A study of test case gen-
eration and prioritization. In 2007 IEEE International
Conference on Software Maintenance, pages 255—
264, Los Alamitos, CA, USA. IEEE Computer Soci-
ety.
ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering
118