future research, it is anticipated that this work will
make a meaningful contribution to the enhancement
of logistics and transportation operations.
ACKNOWLEDGEMENTS
This research was supported by Edital FAPERGS/
CNPq 07/2022 – PDJ.
REFERENCES
Bispo, R. C. (2018). Planejador de roteiros tur
´
ısticos: uma
aplicac¸
˜
ao do problema do Caixeiro viajante na cidade
do Recife. Brasil.
Borowski, M., Gora, P., Karnas, K., Błajda, M., Kr
´
ol,
K., Matyjasek, A., Burczyk, D., Szewczyk, M., and
Kutwin, M. (2020). New hybrid quantum annealing
algorithms for solving vehicle routing problem. In
ICCS, pages 546–561. Springer.
Bramer, M. (2007). Principles of data mining. Springer.
Bruni, M., Guerriero, F., and Beraldi, P. (2014). Design-
ing robust routes for demand-responsive transport sys-
tems. Transportation Research Part E: Logistics and
Transportation Review, 70:1–16.
Chen, R. and Tan, Y. (2021). A multi-branch ensemble
agent network for multi-agent reinforcement learn-
ing. International Conference on Data Mining and
Big Data, pages 485–498.
Cover, T. and Hart, P. (1967). Nearest neighbor pattern clas-
sification. IEEE Transactions on Information Theory,
13(1):21–27.
Croes, G. A. (1958). A method for solving traveling-
salesman problems. Operations research, 6(6):791–
812.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, page 226–231.
AAAI Press.
Fraga, M. C. P. (2006). Uma metodologia h
´
ıbrida
col
ˆ
onia de formigas–busca tabu–reconex
˜
ao por cam-
inhos para resoluc¸
˜
ao do problema de roteamento
de ve
´
ıculos com janelas de tempo. Dissertac¸
˜
ao de
Mestrado em Modelagem Matem
´
atica e Computac¸
˜
ao,
Centro Federal . . . .
Golbarg, M. C. and Luna, H. P. L. (2000). Otimizac¸
˜
ao com-
binat
´
oria e programac¸
˜
ao linear. Editora CAMPUS,
Rio de Janeiro.
Goldbarg, M. C. and Luna, H. P. L. (2005). Otimizac¸
˜
ao
combinat
´
oria e programac¸
˜
ao linear: modelos e algo-
ritmos. Elsevier.
Jiang, H., Lu, M., Tian, Y., Qiu, J., and Zhang, X. (2022).
An evolutionary algorithm for solving capacitated ve-
hicle routing problems by using local information. Ap-
plied Soft Computing, 117:108431.
Kangah, J. K., Appati, J. K., Darkwah, K. F., and Soli,
M. A. T. (2021). Implementation of an h-psoga op-
timization model for vehicle routing problem. Inter-
national Journal of Applied Metaheuristic Computing
(IJAMC), 12(3):148–162.
Laporte, G. (1992). The vehicle routing problem: An
overview of exact and approximate algorithms. Euro-
pean journal of operational research, 59(3):345–358.
Li, S., Gong, W., Yan, X., Hu, C., Bai, D., Wang, L.,
and Gao, L. (2019). Parameter extraction of photo-
voltaic models using an improved teaching-learning-
based optimization. Energy Conversion and Manage-
ment, 186:293–305.
Lima, S. J. D. A. (2015). Otimizac¸
˜
ao do problema de
roteamento de ve
´
ıculos capacitado usando algorit-
mos gen
´
eticos com heur
´
ısticas e representac¸
˜
oes cro-
moss
ˆ
omicas alternativas. Universidade Nove de
Julho.
Lin, S. (1965). Computer solutions of the traveling
salesman problem. Bell System Technical Journal,
44(10):2245–2269.
Lu, H., Zhang, X., and Yang, S. (2020). A learning-based
iterative method for solving vehicle routing problems.
International conference on learning representations.
MacQueen, J. (1967). Classification and analysis of mul-
tivariate observations. University of California Los
Angeles LA USA, pages 281–297.
Opitz, D. and Maclin, R. (1999). Popular ensemble meth-
ods: An empirical study. Journal of artificial intelli-
gence research, 11:169–198.
Polikar, R. (2009). Ensemble learning. Scholarpedia 4 (1):
2776. Doi:10.4249/scholarpedia.2776.
Priy, S. (2013). Clustering in machine learning. Geeks-
forGeeks.
Sammouda, R., El-Zaart, A., et al. (2021). An optimized
approach for prostate image segmentation using k-
means clustering algorithm with elbow method. Com-
putational Intelligence and Neuroscience, 2021.
Santos, A. G. (2022). Uma meta-heur
´
ıstica adaptativa apli-
cada ao problema de roteamento de ve
´
ıculos capacita-
dos: estudo de caso de uma transportadora de pacotes.
Santos, R. L. and Leal, J. (2006). Uma aplicac¸
˜
ao de al-
goritmos de col
ˆ
onias de formigas em problemas de
roteirizac¸
˜
ao de ve
´
ıculos com janelas de tempo.
Silva, C. E. d. (2020). Coordenac¸
˜
ao de M
´
ultiplos Ve
´
ıculos
Aut
ˆ
onomos de Entrega Usando K-Means e Algoritmos
Bio-Inspirados. PhD thesis, Universidade Federal de
Uberl
ˆ
andia.
Siqueira, R. (2017). Comparac¸
˜
ao de metodos heuristicos
para otimizac¸
˜
ao de rotas de distribuic¸
˜
ao no municipio
de Cascavel-PR. Universidade Tecnol
´
ogica Federal
do Paran
´
a.
Vieira, H. (2013). Metaheuristica para a soluc¸
˜
ao de
problemas de roteamento de ve
´
ıculos com janela de
tempo. campinas: Unicamp, 2013. 108p. Dissertac¸
˜
ao
(Mestrado em Matem
´
atica Aplicada)–Instituto de
Matem
´
aticada.
Wang, F., Liao, F., Li, Y., Yan, X., and Chen, X. (2021). An
ensemble learning based multi-objective evolutionary
algorithm for the dynamic vehicle routing problem
with time windows. Computers & Industrial Engi-
neering, 154:107131.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
312