Caporale, D., Settimi, A., Massa, F., Amerotti, F., Corti, A.,
Fagiolini, A., Guiggiani, M., Bicchi, A., and Pallot-
tino, L. (2019). Towards the design of robotic drivers
for full-scale self-driving racing cars. In 2019 In-
ternational Conference on Robotics and Automation
(ICRA), pages 5643–5649. IEEE.
Dow, J. (2017). Roborace pits (wo)man versus autonomous
racing machine around hong kong track. https://electr
ek.co/2017/12/13/roborace-woman-vs-autonomous-r
acing-machine/. Accessed: Oct. 05, 2023.
Fingas, J. (2018). Roborace’s self-driving car isn’t faster
than a human (yet). https://web.archive.org/web/2018
0621015907/https://www.engadget.com/2018/05/14/
roborace-self-driving-car-versus-human/. Accessed:
Oct. 05, 2023.
Frederick, R. (2023). Autonomous Vehicles Handling Anal-
ysis for an Indy Autonomous Challenge Car. PhD the-
sis, The University of Alabama, Tuscaloosa.
IAC (2020). Indy autonomous challenge. https://www.indy
autonomouschallenge.com/.
IAC (2022). Indy autonomous challenge racecar and ream
polimove set new land speed record for autonomous
racecar. [Accessed 22-02-2024].
Kelion, L. (2017). Driverless roborace car crashes at speed
in buenos aires. https://www.bbc.com/news/technol
ogy-39027477. Accessed: Oct. 08, 2023.
Knight, M. and Blendis, S. (2016). Driverless “roborace”
car makes street track debut in marrakech.
Lee, D., Jung, C., Finazzi, A., Seong, H., and Shim, D. H.
(2022). Resilient navigation and path planning system
for high-speed autonomous race car. arXiv preprint
arXiv:2207.12232.
Lee, D., Nam, H., Ryu, C., Nah, S., Moon, S., and Shim,
D. H. (2023a). Enhancing state estimator for au-
tonomous race car: Leveraging multi-modal system
and managing computing resources. arXiv preprint
arXiv:2308.07173.
Lee, D., Nam, H., Ryu, C., Nah, S., and Shim, D. H.
(2023b). Resilient navigation based on multimodal
measurements and degradation identification for high-
speed autonomous race cars. In 2023 IEEE Intelligent
Vehicles Symposium (IV), page 1–8.
Luminar (2021). Hydra. https://levelfivesupplies.com/wp
-content/uploads/2020/08/Luminar-Hydra-Datasheet
.pdf. Accessed: Jan. 02, 2024.
Mar, M., Chellapandi, V., Yuan, L., Wang, Z., and Dietz,
E. (2024). A review of full-sized autonomous racing
vehicle sensor architecture.
Massa, F., Bonamini, L., Settimi, A., Pallottino, L., and
Caporale, D. (2020). Lidar-based gnss denied lo-
calization for autonomous racing cars. Sensors,
20(14):3992.
Moore, T. and Stouch, D. (2014). A generalized extended
kalman filter implementation for the robot operating
system. In Proceedings of the 13th International Con-
ference on Intelligent Autonomous Systems (IAS-13).
Springer.
NVIDIA (2016). Nvidia px2. https://developer.nvidia.com
/drive/px2.
On-Road Automated Driving (ORAD) Committee (2021).
Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles. SAE
International.
Raji, A., Caporale, D., Gatti, F., Giove, A., Verucchi, M.,
Malatesta, D., Musiu, N., Toschi, A., Popitanu, S. R.,
Bagni, F., et al. (2023a). er. autopilot 1.0: The full
autonomous stack for oval racing at high speeds. arXiv
preprint arXiv:2310.18112.
Raji, A., Liniger, A., Giove, A., Toschi, A., Musiu, N.,
Morra, D., Verucchi, M., Caporale, D., and Bertogna,
M. (2022). Motion planning and control for multi ve-
hicle autonomous racing at high speeds. In 2022 IEEE
25th International Conference on Intelligent Trans-
portation Systems (ITSC), pages 2775–2782. IEEE.
Raji, A., Musiu, N., Toschi, A., Prignoli, F., Mascaro, E.,
Musso, P., Amerotti, F., Liniger, A., Sorrentino, S.,
and Bertogna, M. (2023b). A tricycle model to ac-
curately control an autonomous racecar with locked
differential. arXiv preprint arXiv:2312.14808.
Renzler, T., Stolz, M., Schratter, M., and Watzenig, D.
(2020). Increased accuracy for fast moving lidars:
Correction of distorted point clouds. In 2020 IEEE In-
ternational Instrumentation and Measurement Tech-
nology Conference (I2MTC), page 1–6.
Roborace (2016). Roborace. Accessed: Oct. 01, 2023.
Roborace (2019). The world’s fastest autonomous car robo-
car guinness world record. [Accessed 22-02-2024].
Sarkar, S. and Mohan, B. (2019). Review on Autonomous
Vehicle Challenges: AICC 2018, pages 593–603.
Schratter, M. et al. (2021). Lidar-based mapping and lo-
calization for autonomous racing. In Proc. Int. Conf.
Robot. Autom.(ICRA) Workshop Opportunities Chal-
lenges Auton. Racing, page 1–6.
Speedgoat (2016). Mobile real-time target machine. https:
//www.speedgoat.com/products-services/real-time-t
arget-machines/mobile-real-time-target-machine.
Spisak, J., Saba, A., Suvarna, N., Mao, B., Zhang, C. T.,
Chang, C., Scherer, S., and Ramanan, D. (2022). Ro-
bust modeling and controls for racing on the edge.
arXiv preprint arXiv:2205.10841.
Stahl, T. and Diermeyer, F. (2021). Online verification en-
abling approval of driving functions—implementation
for a planner of an autonomous race vehicle. IEEE
Open Journal of Intelligent Transportation Systems,
2:97–110.
Stahl, T., Wischnewski, A., Betz, J., and Lienkamp, M.
(2019a). Multilayer graph-based trajectory planning
for race vehicles in dynamic scenarios. In 2019
IEEE Intelligent Transportation Systems Conference
(ITSC), page 3149–3154.
Stahl, T., Wischnewski, A., Betz, J., and Lienkamp, M.
(2019b). ROS-based localization of a race vehicle at
high-speed using lidar. In E3S Web of Conferences,
volume 95, page 04002. EDP Sciences.
Tumeo, A., Ceriani, M., Palermo, G., Minutoli, M., Castel-
lana, V., and Ferrandi, F. (2017). Chapter 3 - real-time
considerations for rugged embedded systems. In Vega,
A., Bose, P., and Buyuktosunoglu, A., editors, Rugged
A Qualitative Review of Full Sized Autonomous Racing Vehicle Sensors: A Case Study
317