
her valuable feedback and to Leilani Battle for allow-
ing the use of her system’s imagery. This material
is based upon work supported by the U.S. National
Science Foundation under grant numbers IIS-2142977
and OAC-2118201.
REFERENCES
Bancilhon, M., Liu, Z., and Ottley, A. (2020). Let’s Gam-
ble: How a Poor Visualization Can Elicit Risky Be-
havior. In 2020 IEEE Visualization Conference (VIS),
pages 196–200. IEEE.
Bancilhon, M., Wright, A., Ha, S., Crouser, R. J., and Ot-
tley, A. (2023). Why Combining Text and Visualiza-
tion Could Improve Bayesian Reasoning: A Cognitive
Load Perspective. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems,
pages 1–15.
Battle, L., Chang, R., and Stonebraker, M. (2016). Dynamic
Prefetching of Data Tiles for Interactive Visualization.
In Proceedings of the 2016 International Conference
on Management of Data, pages 1363–1375.
Bleier, A. and Eisenbeiss, M. (2015). The Importance of
Trust for Personalized Online Advertising. Journal of
Retailing, 91(3):390–409.
Bobadilla-Suarez, S. and Love, B. C. (2018). Fast or Frugal,
but not both: Decision Heuristics Under Time Pres-
sure. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 44(1):24.
Brehmer, M. and Munzner, T. (2013). A Multi-Level
Typology of Abstract Visualization Tasks. IEEE
transactions on visualization and computer graphics,
19(12):2376–2385.
Brown, E. T., Liu, J., Brodley, C. E., and Chang, R. (2012).
Dis-Function: Learning Distance Functions Interac-
tively. In 2012 IEEE conference on visual analytics
science and technology (VAST), pages 83–92. IEEE.
Brown, E. T., Ottley, A., Zhao, H., Lin, Q., Souvenir, R.,
Endert, A., and Chang, R. (2014). Finding Waldo:
Learning about Users from their Interactions. IEEE
Transactions on visualization and computer graphics,
20(12):1663–1672.
Ceneda, D., Gschwandtner, T., May, T., Miksch, S., Schulz,
H.-J., Streit, M., and Tominski, C. (2017). Charac-
terizing Guidance in Visual Analytics. IEEE Trans-
actions on Visualization and Computer Graphics,
23(1):111–120.
Chong, T., Yu, T., Keeling, D. I., and de Ruyter, K. (2021).
AI-chatbots on the services frontline addressing the
challenges and opportunities of agency. Journal of
Retailing and Consumer Services, 63:102735.
Crolic, C., Thomaz, F., Hadi, R., and Stephen, A. T.
(2022). Blame the bot: Anthropomorphism and anger
in customer–chatbot interactions. Journal of Market-
ing, 86(1):132–148.
Crouser, R. J., Ottley, A., and Chang, R. (2013). Balancing
human and machine contributions in human computa-
tion systems. In Handbook of Human Computation,
pages 615–623. Springer.
Crouser, R. J., Ottley, A., Swanson, K., and Montoly, A.
(2020). Investigating the Role of Locus of Control
in Moderating Complex Analytic Workflows. EuroVis
2020-Short Papers.
Dabek, F. and Caban, J. J. (2016). A Grammar-Based
Approach for Modeling User Interactions and Gener-
ating Suggestions During the Data Exploration Pro-
cess. IEEE Transactions on Visualization and Com-
puter Graphics, 23(1):41–50.
Del Campo, C., Pauser, S., Steiner, E., and Vetschera, R.
(2016). Decision making styles and the use of heuris-
tics in decision making. Journal of Business Eco-
nomics, 86:389–412.
Flanagan, J. R. and Johansson, R. S. (2003). Action plans
used in action observation. Nature, 424(6950):769–
771.
Gathani, S., Monadjemi, S., Ottley, A., and Battle, L.
(2022). A Grammar-Based Approach for Applying
Visualization Taxonomies to Interaction Logs. Com-
puter Graphics Forum, 41(3):489–500.
Gotz, D. and Zhou, M. X. (2009). Characterizing Users’
Visual Analytic Activity for Insight Provenance. In-
formation Visualization, 8(1):42–55.
Ha, S., Monadjemi, S., Garnett, R., and Ottley, A. (2022).
A Unified Comparison of User Modeling Techniques
for Predicting Data Interaction and Detecting Explo-
ration Bias. IEEE Transactions on Visualization and
Computer Graphics, 29(1):483–492.
Heiner, R. A. (1983). The origin of predictable behavior.
The American economic review, 73(4):560–595.
Huang, Y.-S. S. and Dootson, P. (2022). Chatbots and ser-
vice failure: When does it lead to customer aggres-
sion. Journal of Retailing and Consumer Services,
68:103044.
Kim, B.-D. and Park, K. (1997). Studying patterns of con-
sumer’s grocery shopping trip. Journal of retailing,
73(4):501–517.
Kim, H., Choi, D., Drake, B., Endert, A., and Park, H.
(2019). TopicSifter: Interactive Search Space Reduc-
tion through Targeted Topic Modeling. In 2019 IEEE
Conference on Visual Analytics Science and Technol-
ogy (VAST), pages 35–45. IEEE.
Krumme, C., Llorente, A., Cebrian, M., Pentland, A., and
Moro, E. (2013). The predictability of consumer visi-
tation patterns. Scientific reports, 3(1):1645.
Lambrecht, A. and Tucker, C. (2013). When does retarget-
ing work? information specificity in online advertis-
ing. Journal of Marketing research, 50(5):561–576.
Liu, Z., Crouser, R. J., and Ottley, A. (2020). Survey
on Individual Differences in Visualization. Computer
Graphics Forum, 39(3):693–712.
Liu, Z. and Heer, J. (2014). The Effects of Interac-
tive Latency on Exploratory Visual Analysis. IEEE
Transactions on Visualization and Computer Graph-
ics, 20(12):2122–2131.
McFarlane, D. C. (1998). Interruption of people in human-
computer interaction. The George Washington Uni-
versity.
The Dance of Logic and Unpredictability: Examining the Predictability of User Behavior on Visual Analytics Tasks
19