by using varied weights during the optimization pro-
cess.
REFERENCES
Abolfathi, M., Raghebi, Z., Jafarian, J., and Banaei-
Kashani, F. (2021). A scalable role mining approach
for large organizations. pages 45–54.
Al-Kahtani, M. and Sandhu, R. (2004). Rule-based rbac
with negative authorization. In 20th Annual Computer
Security Applications Conference, pages 405–415.
Alayda, S., Almowaysher, N., Humayun, M., and Jhanjhi,
N. (2020). A novel hybrid approach for access control
in cloud computing. International Journal of Engi-
neering Research and Technology, 13:3404–3414.
Assent, I. (2012). Clustering high dimensional data.
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(4):340–350.
Bergstra, J., Yamins, D., and Cox, D. (2013). Making
a science of model search: Hyperparameter optimi-
zation in hundreds of dimensions for vision archi-
tectures. In Dasgupta, S. and McAllester, D., edi-
tors, Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of
Machine Learning Research, pages 115–123, Atlanta,
Georgia, USA. PMLR.
Cavoukian, A., Chibba, M., Williamson, G., and Ferguson,
A. (2015). The importance of abac: attribute-based
access control to big data: privacy and context. The
Privacy and Big Data Institute, Canada.
Di Pietro, R., Colantonio, A., and Ocello, A. (2012). Role
mining in business: taming role-based access control
administration. World Scientific.
Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber,
R., and Tarjan, R. (2008). Fast exact and heuristic
methods for role minimization problems. pages 1–10.
Jayasundara, S., Arachchilage, N., and Russello, G. (2024).
Vision: ”accessformer”: Feedback-driven access con-
trol policy generation framework.
Karp, A., Haury, H., and Davis, M. (2010). From abac to
zbac: The evolution of access control models. ISSA
(Information Systems Security Association). Journal,
8:22–30.
Kern, A., Kuhlmann, M., Schaad, A., and Moffett, J. (2002).
Observations on the role life-cycle in the context of
enterprise security management. pages 43–51.
K
¨
oppen, M. (2000). The curse of dimensionality. In 5th on-
line world conference on soft computing in industrial
applications (WSC5), volume 1, pages 4–8.
Kuhn, D., Coyne, E., and Weil, T. (2010). Adding attributes
to role-based access control. Computer, 43:79–81.
Lloyd, S. (1982). Least squares quantization in pcm. IEEE
Transactions on Information Theory, 28(2):129–137.
Molloy, I., Chen, H., Li, T., Wang, Q., Li, N., Bertino, E.,
Calo, S., and Lobo, J. (2008). Mining roles with se-
mantic meanings. pages 21–30.
Ni, Q., Lobo, J., Calo, S., Rohatgi, P., and Bertino, E.
(2009). Automating role-based provisioning by lear-
ning from examples. pages 75–84.
Nobi, M., Gupta, M., Praharaj, L., Abdelsalam, M.,
Krishnan, R., and Sandhu, R. (2022a). Machine lear-
ning in access control: A taxonomy and survey.
Nobi, M. N., Krishnan, R., Huang, Y., Shakarami, M., and
Sandhu, R. (2022b). Toward Deep Learning Based
Access Control. CODASPY ’22: Proceedings of the
Twelfth ACM Conference on Data and Application
Security and Privacy, page 143–154.
Olabanji, S., Olaniyi, O., Adigwe, C., Okunleye, O., and
Oladoyinbo, T. (2024). Ai for identity and access
management (iam) in the cloud: Exploring the poten-
tial of artificial intelligence to improve user authenti-
cation, authorization, and access control within cloud-
based systems. Asian Journal of Research in Compu-
ter Science, 17:38–56.
Sandhu, R., Coyne, E., Feinstein, H., and Youman, C.
(1996). Role-based access control models. Compu-
ter, 29(2):38–47.
Schlegelmilch, J. and Steffens, U. (2005). Role mining with
orca. pages 168–176.
Sch
¨
utze, H., Manning, C. D., and Raghavan, P. (2008).
Introduction to information retrieval, volume 39.
Cambridge University Press Cambridge.
Vaidya, J., Atluri, V., and Warner, J. (2006). Roleminer: mi-
ning roles using subset enumeration. In Proceedings
of the 13th ACM conference on Computer and com-
munications security, pages 144–153.
Zhang, D., Ramamohanarao, K., and Ebringer, T. (2007).
Role engineering using graph optimisation. pages
139–144.
Zhou, L., Su, C., Li, Z., Liu, Z., and Hancke, G. P. (2019).
Automatic fine-grained access control in scada by ma-
chine learning. Future Generation Computer Systems,
93:548–559.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
728