
cision above 90% for that specific label. That being
said we have found YOLOv5 to be the best model for
road damage detection in Peru. As it reports the best
mAP50 across both experiments 99.0% and 98.3%,
with and without cracks correspondingly. As we have
found crack detection to be viable a YoloV5 model
trained with crack annotations will be the one chosen
for our mobile application.
Due to the lack of data availability corresponding
to our context which is Lima, Peru; pushed us into
forming our own novel dataset. That being said, time
was also a constraint allowing us to elaborate our ex-
periments with 618 photos (325 from Peru and 293
from RDD20(Arya et al., 2021)), thus a data aug-
mentation phase was required in order to be able to
train a robust model with plenty of data. This pro-
cess allowed us to train our models with 2497 images,
in contrast to our original 618 images. Our results
demonstrated the effectiveness and usefulness of data
augmentation for road damage detection.
As future work, we would like to be able to use
drone or satellite imaging in order to further opti-
mize and speed up the road damage detection process.
While also testing its practicality as Peru’s roads are
highly transited, it poses the question if cars would be
a major obstacle to the visibility of potholes similarly
to other topics (Rodr
´
ıguez et al., 2021; Fernandez-
Ramos et al., 2021; Alfaro-Paredes et al., 2021).
REFERENCES
Alfaro-Paredes, E., Alfaro-Carrasco, L., and Ugarte, W.
(2021). Query by humming for song identification us-
ing voice isolation. In IEA/AIE (2), volume 12799 of
Lecture Notes in Computer Science, pages 323–334.
Springer.
Aparna, Bhatia, Y., Rai, R., Gupta, V., Aggarwal, N., and
Akula, A. (2022). Convolutional neural networks
based potholes detection using thermal imaging. J.
King Saud Univ. Comput. Inf. Sci., 34(3):578–588.
Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., and
Sekimoto, Y. (2021). Rdd2020: An annotated im-
age dataset for automatic road damage detection using
deep learning. Data in Brief, 36:107133.
Baek, J.-W. and Chung, K. (2020). Pothole classification
model using edge detection in road image. Applied
Sciences, 10:6662.
Dong, J., Li, Z., Wang, Z., Wang, N., Guo, W., Ma, D.,
Hu, H., and Zhong, S. (2021). Pixel-level intelli-
gent segmentation and measurement method for pave-
ment multiple damages based on mobile deep learn-
ing. IEEE Access, 9:143860–143876.
Dong, J., Wang, N., Fang, H., Wu, R., Zheng, C., Ma, D.,
and Hu, H. (2022). Automatic damage segmentation
in pavement videos by fusing similar feature extrac-
tion siamese network (sfe-snet) and pavement damage
segmentation capsule network (pds-capsnet). Automa-
tion in Construction, 143:104537.
D
´
avila Estrada, H. A. (2022). Propuesta de un concreto para
pavimentos r
´
ıgidos con adici
´
on de polvo de vidrio
en reemplazo parcial del cemento y agregado fino,
af
´
ın de reducir la contaminaci
´
on producida por la
construcci
´
on de la capa de rodadura en la carretera
mayocc-huanta, tramo allccomachay-huanta departa-
mento de ayacucho.
Egaji, O. A., Evans, G., Griffiths, M. G., and Islas, G.
(2021). Real-time machine learning-based approach
for pothole detection. Expert Syst. Appl., 184:115562.
Fernandez-Ramos, O., Johnson-Ya
˜
nez, D., and Ugarte, W.
(2021). Reproducing arm movements based on pose
estimation with robot programming by demonstration.
In ICTAI, pages 294–298. IEEE.
Kim, Y.-M., Kim, Y.-G., Son, S.-Y., Lim, S.-Y., Choi, B.-Y.,
and Choi, D.-H. (2022). Review of recent automated
pothole-detection methods. Applied Sciences, 12(11).
Ministerio de Transportes y Comunicaciones (2015). Re-
sumen ejecutivo del inventario basico de la red vial
departamental o regional.
Moscoso Thompson, E., Ranieri, A., Biasotti, S., Chic-
chon, M., Sipiran, I., Pham, M.-K., Nguyen-Ho, T.-L.,
Nguyen, H.-D., and Tran, M.-T. (2022). Shrec 2022:
Pothole and crack detection in the road pavement us-
ing images and rgb-d data. Computers & Graphics,
107:161–171.
Pandey, A. K., Iqbal, R., Maniak, T., Karyotis, C., Akuma,
S., and Palade, V. (2022). Convolution neural net-
works for pothole detection of critical road infras-
tructure. Computers and Electrical Engineering,
99:107725.
Park, S.-S., Tran, V.-T., and Lee, D.-E. (2021). Applica-
tion of various yolo models for computer vision-based
real-time pothole detection. Applied Sciences, 11(23).
Patra, S., Middya, A. I., and Roy, S. (2021). Potspot: Partic-
ipatory sensing based monitoring system for pothole
detection using deep learning. Multim. Tools Appl.,
80(16):25171–25195.
Rateke, T. and von Wangenheim, A. (2021). Road surface
detection and differentiation considering surface dam-
ages. Auton. Robots, 45(2):299–312.
Rodr
´
ıguez, M., Pastor, F., and Ugarte, W. (2021). Classi-
fication of fruit ripeness grades using a convolutional
neural network and data augmentation. In FRUCT,
pages 374–380. IEEE.
Tenorio Construcciones y Soluciones (2022). Manten-
imiento en v
´
ıas.
Wu, C., Wang, Z., Hu, S., Lepine, J., Na, X., Ainalis,
D., and Stettler, M. (2020). An automated machine-
learning approach for road pothole detection using
smartphone sensor data. Sensors, 20(19).
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
746