Aksoy, S. G., Joslyn, C., Marrero, C. O., Praggastis, B., and
Purvine, E. (2020). Hypernetwork science via high-
order hypergraph walks. EPJ Data Science, 9(1):16.
Aktas, M. E. and Akbas, E. (2022). Hypergraph laplacians
in diffusion framework. In Complex Networks & Their
Applications X: Volume 2, Proceedings of the Tenth
International Conference on Complex Networks and
Their Applications COMPLEX NETWORKS 2021 10,
pages 277–288. Springer.
Aktas, M. E., Jawaid, S., Gokalp, I., and Akbas, E. (2022).
Influence maximization on hypergraphs via similarity-
based diffusion. In 2022 IEEE International Con-
ference on Data Mining Workshops (ICDMW), pages
1197–1206. IEEE.
Aktas, M. E., Jawaid, S., Harrington, E., and Akbas, E.
(2021). Influential nodes detection in complex net-
works via diffusion fr
´
echet function. In 2021 20th
IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 1688–1695. IEEE.
Antelmi, A., Cordasco, G., Spagnuolo, C., and Szufel,
P. (2021). Social influence maximization in hyper-
graphs. Entropy, 23(7):796.
Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas,
M., Patania, A., Young, J.-G., and Petri, G. (2020).
Networks beyond pairwise interactions: Structure and
dynamics. Physics Reports, 874:1–92.
Bonacich, P. (1972). Factoring and weighting approaches
to status scores and clique identification. Journal of
mathematical sociology, 2(1):113–120.
Chen, W., Wang, C., and Wang, Y. (2010). Scalable in-
fluence maximization for prevalent viral marketing in
large-scale social networks. In Proceedings of the 16th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1029–1038.
Chiranjeevi, M., Dhuli, V. S., Enduri, M. K., and Cenkera-
maddi, L. R. (2023). Icdc: Ranking influential nodes
in complex networks based on isolating and clustering
coefficient centrality measures. IEEE Access.
Domingos, P. and Richardson, M. (2001). Mining the
network value of customers. In Proceedings of the
seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 57–66.
Granovetter, M. (1978). Threshold models of collective be-
havior. American journal of sociology, 83(6):1420–
1443.
Hajarathaiah, K., Enduri, M. K., Anamalamudi, S., Abdul,
A., and Chen, J. (2024). Node significance analysis
in complex networks using machine learning and cen-
trality measures. IEEE Access.
Hajarathaiah, K., Enduri, M. K., Anamalamudi, S., and
Sangi, A. R. (2023). Algorithms for finding influen-
tial people with mixed centrality in social networks.
Arabian Journal for Science and Engineering, pages
1–12.
Hajarathaiah, K., Enduri, M. K., Dhuli, S., Anamalamudi,
S., and Cenkeramaddi, L. R. (2022). Generalization of
relative change in a centrality measure to identify vital
nodes in complex networks. IEEE Access, 11:808–
824.
Kempe, D., Kleinberg, J., and Tardos,
´
E. (2003). Maximiz-
ing the spread of influence through a social network.
In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 137–146.
Kim, M., Newth, D., and Christen, P. (2013). Model-
ing dynamics of diffusion across heterogeneous social
networks: News diffusion in social media. Entropy,
15(10):4215–4242.
Ruhnau, B. (2000). Eigenvector-centrality—a node-
centrality? Social networks, 22(4):357–365.
Senevirathna, C., Gunaratne, C., Rand, W., Jayalath, C., and
Garibay, I. (2021). Influence cascades: Entropy-based
characterization of behavioral influence patterns in so-
cial media. Entropy, 23(2):160.
Wang, X., Ning, Z., Zhou, M., Hu, X., Wang, L., Zhang,
Y., Yu, F. R., and Hu, B. (2018). Privacy-preserving
content dissemination for vehicular social networks:
Challenges and solutions. IEEE Communications Sur-
veys & Tutorials, 21(2):1314–1345.
Xie, M., Zhan, X.-X., Liu, C., and Zhang, Z.-K. (2023a).
An efficient adaptive degree-based heuristic algorithm
for influence maximization in hypergraphs. Informa-
tion Processing & Management, 60(2):103161.
Xie, X., Zhan, X., Zhang, Z., and Liu, C. (2023b). Vital
node identification in hypergraphs via gravity model.
Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 33(1).
Zhu, J., Zhu, J., Ghosh, S., Wu, W., and Yuan, J. (2019).
Social influence maximization in hypergraph in social
networks. IEEE Transactions on Network Science and
Engineering, 6(4):801–811.
COMPLEXIS 2024 - 9th International Conference on Complexity, Future Information Systems and Risk
106