REFERENCES
Lin, C.-J., & Lin, C.-H. (2023). Classification of EEG Signals
Using a Common Spatial Pattern Based Motor-Imagery
for a Lower-limb Rehabilitation Exoskeleton. IEEE
EUROCON 2023-20th International Conference on
Smart Technologies, 764–769. https://ieeexplore.
ieee.org/abstract/document/10198960/.
Orban, M., Elsamanty, M., Guo, K., Zhang, S., & Yang, H.
(2022). A Review of Brain Activity and EEG-Based
Brain–Computer Interfaces for Rehabilitation
Application. Bioengineering, 9(12), 768. https://doi.org/
10.3390/bioengineering9120768.
Tariq, M., Trivailo, P. M., & Simic, M. (2018). EEG-based
BCI control schemes for lower-limb assistive-robots.
Frontiers in Human Neuroscience, 12, 312.
Lebedev, M. A., & Nicolelis, M. A. L. (2017). Brain-
Machine Interfaces: From Basic Science to
Neuroprostheses and Neurorehabilitation. Physiological
Reviews, 97(2), 767–837. https://doi.org/10.1152/
physrev.00027.2016.
Paredes-Acuna, N., Utpadel-Fischler, D., Ding, K., Thakor,
N. V., & Cheng, G. (2024). Upper limb intention tremor
assessment: Opportunities and challenges in wearable
technology. Journal of NeuroEngineering and
Rehabilitation, 21(1), 8. https://doi.org/10.1186/s129 84-
023-01302-9.
Liao, K., Xiao, R., Gonzalez, J., & Ding, L. (2014). Decoding
individual finger movements from one hand using human
EEG signals. PloS One, 9(1), e85192.
Jeon, S. Y., Ki, M., & Shin, J.-H. (2024). Resistive versus
active assisted robotic training for the upper limb after a
stroke: A randomized controlled study. Annals of
Physical and Rehabilitation Medicine, 67(1), 101789.
https://doi.org/10.1016/j.rehab.2023.101789.
Choi, J., Kim, K. T., Jeong, J. H., Kim, L., Lee, S. J., & Kim,
H. (2020). Developing a motor imagery-based real-time
asynchronous hybrid BCI controller for a lower-limb
exoskeleton. Sensors, 20(24), 7309.
Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A self-
paced brain–computer interface system with a low false
positive rate. Journal of Neural Engineering, 5(1), 9.
Fazli, S., Danóczy, M., Popescu, F., Blankertz, B., & Müller,
K.-R. (2009). Using Rest Class and Control Paradigms
for Brain Computer Interfacing. In J. Cabestany, F.
Sandoval, A. Prieto, & J. M. Corchado (Eds.), Bio-
Inspired Systems: Computational and Ambient
Intelligence (Vol. 5517, pp. 651–665). Springer Berlin
Heidelberg. https://doi.org/10.1007/ 978-3-642-02478-
8_82.
Gardner, A. D., Potgieter, J., & Noble, F. K. (2017). A review
of commercially available exoskeletons’ capabilities.
2017 24th International Conference on Mechatronics
and Machine Vision in Practice (M2VIP), 1–5.
https://ieeexplore.ieee.org/abstract/ document/8211470/.
Gordleeva, S. Y., Lobov, S. A., Grigorev, N. A., Savosenkov,
A. O., Shamshin, M. O., Lukoyanov, M. V., Khoruzhko,
M. A., & Kazantsev, V. B. (2020). Real-time EEG–EMG
human–machine interface-based control system for a
lower-limb exoskeleton. IEEE Access, 8, 84070–84081.
G.tec medical engineering GmbH | Brain-Computer
Interfaces & Neurotechnology
. (n.d.). Retrieved January
20, 2024, from https://www.gtec.at/.
Hauck, M., Baumgärtner, U., Hille, E., Hille, S., Lorenz, J.,
& Quante, M. (2006). Evidence for early activation of
primary motor cortex and SMA after electrical lower
limb stimulation using EEG source reconstruction. Brain
Research, 1125(1), 17–25.
Hsu, W.-C., Lin, L.-F., Chou, C.-W., Hsiao, Y.-T., & Liu, Y.-
H. (2017). EEG Classification of Imaginary Lower Limb
Stepping Movements Based on Fuzzy Support Vector
Machine with Kernel-Induced Membership Function.
International Journal of Fuzzy Systems, 19(2), 566–579.
https://doi.org/10.1007/s40815-016-0259-9.
Jeong, J.-H., Kim, K.-T., Lee, S. J., Kim, D.-J., & Kim, H.
(2022). CNN-based Subject-Transfer Approach for
Training Minimized Lower-Limb MI-BCIs. 2022 10th
International Winter Conference on Brain-Computer
Interface (BCI), 1–4. https://ieeexplore.ieee.org/
abstract/document/9734910/.
Jochumsen, M., Khan Niazi, I., Samran Navid, M., Nabeel
Anwar, M., Farina, D., & Dremstrup, K. (2015). Online
multi-class brain-computer interface for detection and
classification of lower limb movement intentions and
kinetics for stroke rehabilitation. Brain-Computer
Interfaces, 2(4), 202–210. https://doi.org/10.1080/
2326263X.2015.1114978
Exoskeleton Market—Size, Growth & Trends. (n.d.).
Retrieved January 25, 2024, from https://www.
mordorintelligence.com/industry-reports/exoskeleton-
market.
Katona, J., & Kovari, A. (2018). The evaluation of bci and
pebl-based attention tests. Acta Polytechnica Hungarica,
15(3), 225–249.
Kawala-Sterniuk, A., Browarska, N., Al-Bakri, A., Pelc, M.,
Zygarlicki, J., Sidikova, M., Martinek, R., &
Gorzelanczyk, E. J. (2021). Summary of over Fifty Years
with Brain-Computer Interfaces-A Review. Brain
sciences, 11(1), 43. https://doi.org/10.3390/brainsci1101
0043.
Kuś, R., Duszyk, A., Milanowski, P., \Labęcki, M.,
Bierzyńska, M., Radzikowska, Z., Michalska, M.,
Żygierewicz, J., Suffczyński, P., & Durka, P. J. (2013).
On the quantification of SSVEP frequency responses in
human EEG in realistic BCI conditions. PloS One, 8(10),
e77536.
Lebedev, M. A., & Nicolelis, M. A. L. (2017). Brain-
Machine Interfaces: From Basic Science to
Neuroprostheses and Neurorehabilitation. Physiological
Reviews, 97(2), 767–837. https://doi.org/10.1152/
physrev.00027.2016.
Li, W., Shao, K., Zhu, C., Ma, Y., Cao, W., Yin, M., Yang,
L., Luo, M., & Wu, X. (2022). Preliminary study of
online real-time control system for lower extremity
exoskeletons based on EEG and sEMG fusion. 2022
IEEE International Conference on Robotics and
Biomimetics (ROBIO), 1689–1694. https://ieeexplo
re.ieee.org/abstract/document/10011813/.
Liao, K., Xiao, R., Gonzalez, J., & Ding, L. (2014). Decoding
individual finger movements from one hand using human