
Alcal
´
a-Fdez, J., Alcal
´
a, R., and Herrera, F. (2011). A fuzzy
association rule-based classification model for high-
dimensional problems with genetic rule selection and
lateral tuning. IEEE Transactions on Fuzzy Systems,
19(5):857–872.
Alcal
´
a-Fdez, J., Sanchez, L., Garcia, S., del Jesus, M. J.,
Ventura, S., Garrell, J. M., Otero, J., Romero, C., Bac-
ardit, J., Rivas, V. M., et al. (2009). Keel: a software
tool to assess evolutionary algorithms for data mining
problems. Soft Computing, 13:307–318.
Alhasa, K. M., Mohd Nadzir, M. S., Olalekan, P., Latif,
M. T., Yusup, Y., Iqbal Faruque, M. R., Ahamad, F.,
Abd. Hamid, H. H., Aiyub, K., Md Ali, S. H., et al.
(2018). Calibration model of a low-cost air quality
sensor using an adaptive neuro-fuzzy inference sys-
tem. Sensors, 18(12):4380.
Bhardwaj, R. and Pruthi, D. (2020). Evolutionary tech-
niques for optimizing air quality model. Procedia
Computer Science, 167:1872–1879.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence
research, 16:321–357.
Chen, L., Ding, Y., Lyu, D., Liu, X., and Long, H. (2019).
Deep multi-task learning based urban air quality in-
dex modelling. Proceedings of the ACM on Interac-
tive, Mobile, Wearable and Ubiquitous Technologies,
3(1):1–17.
Chi, Z., Yan, H., and Pham, T. (1996). Fuzzy algorithms:
with applications to image processing and pattern
recognition, volume 10. World Scientific.
Cohen, W. W. (1995). Fast effective rule induction. In Ma-
chine learning proceedings 1995, pages 115–123. El-
sevier.
Cord
´
on, O., del Jesus, M., and Herrera, F. (1999). A pro-
posal on reasoning methods in fuzzy rule-based clas-
sification systems. International Journal of Approxi-
mate, 20(1):21–45.
Fern
´
andez, A., Garcia, S., Herrera, F., and Chawla, N. V.
(2018). Smote for learning from imbalanced data:
progress and challenges, marking the 15-year an-
niversary. Journal of artificial intelligence research,
61:863–905.
Ferreira, W. d. A. P., Grout, I., and da Silva, A. C. R.
(2022). Application of a fuzzy artmap neural network
for indoor air quality prediction. In 2022 International
Electrical Engineering Congress (iEECON), pages 1–
4. IEEE.
Fushiki, T. (2011). Estimation of prediction error by us-
ing k-fold cross-validation. Statistics and Computing,
21:137–146.
Garcia, D., Gonzalez, A., and Perez, R. (2014). Overview
of the slave learning algorithm: A review of its evolu-
tion and prospects. International Journal of Compu-
tational Intelligence Systems, 7(6).
H
¨
uhn, J. and H
¨
ullermeier, E. (2009). Furia: an algorithm
for unordered fuzzy rule induction. Data Mining and
Knowledge Discovery, 19(3):293–319.
Ishibuchi, H. and Yamamoto, T. (2005). Rule weight spec-
ification in fuzzy rule-based classification systems.
IEEE Transactions on Fuzzy Systems, 13(4):428–435.
Kumar, R., Kumar, P., and Kumar, Y. (2020). Time series
data prediction using iot and machine learning tech-
nique. Procedia computer science, 167:373–381.
Lee, S. (2005). Application of logistic regression model and
its validation for landslide susceptibility mapping us-
ing gis and remote sensing data. International Journal
of remote sensing, 26(7):1477–1491.
Mattern, D., Jaw, L., Guo, T.-H., Graham, R., and McCoy,
W. (1998). Using neural networks for sensor valida-
tion. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, page 3547.
Nakashima, T., Schaefer, G., Yokota, Y., and Ishibuchi, H.
(2007). A weighted fuzzy classifier and its application
to image processing tasks. Fuzzy Sets and Systems,
158:284–294.
Nasser, A. M. and Pawar, V. (2015). Machine learn-
ing approach for sensors validation and clustering.
In 2015 International Conference on Emerging Re-
search in Electronics, Computer Science and Technol-
ogy (ICERECT), pages 370–375. IEEE.
Organization, W. H. (2016). Ambient air pollution: a global
assessment of exposure and burden of disease. World
Health Organization.
Samal, K. K. R., Babu, K. S., Das, S. K., and Acharaya,
A. (2019). Time series based air pollution forecast-
ing using sarima and prophet model. In proceedings
of the 2019 international conference on information
technology and computer communications, pages 80–
85.
Teh, H. Y., Kempa-Liehr, A. W., and Wang, K. I.-K. (2020).
Sensor data quality: A systematic review. Journal of
Big Data, 7(1):1–49.
Wang, B., Kong, W., and Guan, H. (2019). Air quality for-
casting based on gated recurrent long short-term mem-
ory model. In Proceedings of the ACM Turing Cele-
bration Conference-China, pages 1–9.
Wang, B., Yan, Z., Lu, J., Zhang, G., and Li, T. (2018).
Deep multi-task learning for air quality prediction.
In Neural Information Processing: 25th International
Conference, ICONIP 2018, Siem Reap, Cambodia,
December 13–16, 2018, Proceedings, Part V 25,
pages 93–103. Springer.
Wen, Y.-J., Agogino, A. M., and Goebel, K. (2004).
Fuzzy validation and fusion for wireless sensor net-
works. In ASME International Mechanical Engineer-
ing Congress and Exposition, volume 47063, pages
727–732.
Wold, S., Esbensen, K., and Geladi, P. (1987). Principal
component analysis. Chemometrics and intelligent
laboratory systems, 2(1-3):37–52.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
778