
sion of his 60th birthday. Lecture Notes in Computer
Science N°11560.
Mahboubi, H., Ralaivao, J. C., Loudcher, S., Boussa
¨
ıd,
O., and Bentayeb, F. (2009). X-wacoda: An xml-
based approach for warehousing and analyzing com-
plex data. Advances in Data Warehousing and Mining,
IGI Publishing(3):38–54. Data Warehousing Design
and Advanced Engineering Applications: Methods for
Complex Construction.
Midouni, S. A. D., Darmont, J., and Bentayeb, F.
(2009). Approche de mod
´
elisation multidimen-
sionnelle des donn
´
ees complexes : application aux
donn
´
ees m
´
edicales,. In Journ
´
ees Francophones sur
les Entrep
ˆ
ots de Donn
´
ees et l’Analyse en ligne.
M
¨
uller, J.-P., Rakotonirainy, H. L., and Herv
´
e, D. (2011).
Towards a description logic for scientific modeling.
International Conference on Knowledge Engineering
and Ontology Development (KEOD).
Nassis, V., Rajugan, R., Dillon, T. S., and Rahayu, J. W.
(2005). Conceptual and systematic design approach
for xml document warehouses. International Journal
of Data Warehousing & Mining 1 (3), pages 63–86.
Nemati, H. R., Steiger, D. M., Iyer, L. S., and Herschel,
R. T. (2002). Knowledge warehouse: an architec-
tural integration of knowledge management, decision
support, artificial intelligence and data warehousing.
pages 143–161.
Ngo, V. M., Le-Khac, N.-A., and Kechadi, M.-T. (2019).
Designing and implementing datawarehouse for agri-
cultural big data. In Chen, K., Seshadri, S., and Zhang,
L.-J., editors, Big Data - BigData 2019, pages 1–17.
8th International Congress Held as Part of the Services
Conference Federation, SCF 2019.
Obitko, M., Sn
´
asel, V., and Smid, J. (2004). Ontology de-
sign with formal concept analysis. In International
Conference on Concept Lattices and their Applica-
tions.
Pan, Y. (2020). Multiple knowledge representation of arti-
ficial intelligence. ELSEVIER. Institute of Artificial
Intelligence, Zhejiang University.
Park, B. K., Han, H., and Song, I. Y. (2005). Xml-
olap: A multidimensional analysis framework for xlm
warehouses. 7th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK’05),
Copenhagen, Denmark, Springer:267–280. Vol. 3589
of lecture Notes in Computer Science.
Pokorny, J. (2006). Xml data warehouse: Modeling
and querying. 5th International Baltic Conference
(BalticDb&IS’06), Tallin, Estonia, Institute of Cy-
bernectics at Tallin Technical University:267–280.
Poole, J., Chang, D., Tolbert, D., and Mellor, D. (2003).
Common Warehouse Metamodels. Wiley Publishing
Inc., omg press edition.
Rajugan, R., Chang, E., and Dillon, T. S. (2005). Con-
ceptual design of an xml fact repository for dispersed
xml document warehouses and xml marts. 20th In-
ternational Conference on Computer and Information
Technology (CIT’05), Shanghai, China.
Ralaivao, J. C. and Darmont, J. (2007). Knowledge and
metadata integration for warehousing complex data.
6th International Conference on Information Systems
Technology and its Applications (ISTA 07), Kharkiv,
Ukraine. GI-Edition(107):164–175. Lecture Notes in
Informatics.
Rusu, L. I., Rahaya, J. W., and Taniar, D. (2005). A method-
ology for buidlding xml data warehouse. International
Journal of DataWarehousing and Mining 1 (2), pages
67–92.
Sakr, S. and GaberSakr, M. M. (2014). Large Scale and Big
Data: Processing and Management. CRC Press.
Sawadogo, P. and Darmont, J. (2020). On data lake archi-
tectures and metadata management. JIIS.
Sawadogo, P. N., Kibata, T., and Darmont, J. (2019). Meta-
data management for textual documents in data lakes.
ICEIS.
Soler, E., Trujillo, J., Fern
´
andez-Medina, E., and Piattini,
M. G. (2008a). Building a secure star schema in data
warehouses by an extension of the relational package
from cwm. 30:341–350.
Soler, E., Trujillo, J., Fern
´
andez-Medina, E., and Piattini,
M. G. (2008b). An extension of the relational meta-
model of cwm to represent secure data warehouses at
the logical level. 6:355–362.
Srinivasan, V. (2016). The Intelligent Enterprise in the Era
of Big Data. WILEY.
Tavac, M. and Tavac, V. (2013). The general algorithm for
the design of the mda transformation models. pages
171–176.
Thavornun, V. (2015). Metadata management for knowl-
edge discovery.
Vrdoljak, B., Banek, M., and Rizzi, S. (2003). Design-
ing web warehouse from xml schemas. 5th Intena-
tional Conference on DataWarehousing and knowl-
edge Diskovery (DaWak’03), Prague, Czech Republic,
pages 89–98. Vol. 2737 of Lecture Notes in Computer
Science. Springer.
Wender, B. A. (2017). Refining the Concept of Scientific In-
ference When Working with Big Data: Proceedings of
a Workshop. The National Academic Press. National
Academics of Sciences, Engineering, and Medicine.
Wu, D. and Hakansson, A. (2010). Applying a knowledge
based system for metadata integration for data wara-
houses. In Setchi, R., Jordanov, I., Howlett, R. J., and
Jain, L. C., editors, Knowledge-Based and Intelligent
Information and Engineering Systems, pages 60–69.
Zhang, J., Wang, W., Liu, H., and Zhang, S. (2005). X-
warehouse: building query pattern-driven data. In-
ternational conference World Wide Web (WWW’05),
CHiba, Japan, ACM:896–897.
Zhao, X. and Huang, Z. A formal framework for reasoning
on metadata based on cwm. In International Confer-
ence on Conceptual Modeling.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
336